» Articles » PMID: 34297911

Transcription-mediated Supercoiling Regulates Genome Folding and Loop Formation

Abstract

The chromatin fiber folds into loops, but the mechanisms controlling loop extrusion are still poorly understood. Using super-resolution microscopy, we visualize that loops in intact nuclei are formed by a scaffold of cohesin complexes from which the DNA protrudes. RNA polymerase II decorates the top of the loops and is physically segregated from cohesin. Augmented looping upon increased loading of cohesin on chromosomes causes disruption of Lamin at the nuclear rim and chromatin blending, a homogeneous distribution of chromatin within the nucleus. Altering supercoiling via either transcription or topoisomerase inhibition counteracts chromatin blending, increases chromatin condensation, disrupts loop formation, and leads to altered cohesin distribution and mobility on chromatin. Overall, negative supercoiling generated by transcription is an important regulator of loop formation in vivo.

Citing Articles

Increasingly efficient chromatin binding of cohesin and CTCF supports chromatin architecture formation during zebrafish embryogenesis.

Cossmann J, Kos P, Varamogianni-Mamatsi V, Assenheimer D, Bischof T, Kuhn T Nat Commun. 2025; 16(1):1833.

PMID: 39979259 PMC: 11842872. DOI: 10.1038/s41467-025-56889-5.


Mature chromatin packing domains persist after RAD21 depletion in 3D.

Li W, Carter L, Almassalha L, Gong R, Pujadas-Liwag E, Kuo T Sci Adv. 2025; 11(4):eadp0855.

PMID: 39854464 PMC: 11759041. DOI: 10.1126/sciadv.adp0855.


Chromatin conformation, gene transcription, and nucleosome remodeling as an emergent system.

Almassalha L, Carignano M, Liwag E, Li W, Gong R, Acosta N Sci Adv. 2025; 11(2):eadq6652.

PMID: 39792661 PMC: 11721585. DOI: 10.1126/sciadv.adq6652.


Rethinking chromatin accessibility: from compaction to dynamic interactions.

Fillot T, Mazza D Curr Opin Genet Dev. 2024; 90:102299.

PMID: 39705880 PMC: 11793080. DOI: 10.1016/j.gde.2024.102299.


A deep learning method that identifies cellular heterogeneity using nanoscale nuclear features.

Carnevali D, Zhong L, Gonzalez-Almela E, Viana C, Rotkevich M, Wang A Nat Mach Intell. 2024; 6(9):1021-1033.

PMID: 39309215 PMC: 11415298. DOI: 10.1038/s42256-024-00883-x.


References
1.
Racko D, Benedetti F, Dorier J, Stasiak A . Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Res. 2017; 46(4):1648-1660. PMC: 5829651. DOI: 10.1093/nar/gkx1123. View

2.
Uuskula-Reimand L, Hou H, Samavarchi-Tehrani P, Vietri Rudan M, Liang M, Medina-Rivera A . Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 2016; 17(1):182. PMC: 5006368. DOI: 10.1186/s13059-016-1043-8. View

3.
Tinevez J, Perry N, Schindelin J, Hoopes G, Reynolds G, Laplantine E . TrackMate: An open and extensible platform for single-particle tracking. Methods. 2016; 115:80-90. DOI: 10.1016/j.ymeth.2016.09.016. View

4.
Barutcu A, Blencowe B, Rinn J . Differential contribution of steady-state RNA and active transcription in chromatin organization. EMBO Rep. 2019; 20(10):e48068. PMC: 6776903. DOI: 10.15252/embr.201948068. View

5.
Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson H . Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell. 2008; 132(3):422-33. DOI: 10.1016/j.cell.2008.01.011. View