» Articles » PMID: 29538766

Protein-mediated Loops in Supercoiled DNA Create Large Topological Domains

Overview
Specialty Biochemistry
Date 2018 Mar 15
PMID 29538766
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites.

Citing Articles

Transcribing RNA polymerases: Dynamics of twin supercoiled domains.

Joyeux M Biophys J. 2024; 123(22):3898-3910.

PMID: 39367604 PMC: 11617637. DOI: 10.1016/j.bpj.2024.10.002.


The nucleolar shell provides anchoring sites for DNA untwisting.

Fukute J, Maki K, Adachi T Commun Biol. 2024; 7(1):83.

PMID: 38263258 PMC: 10805735. DOI: 10.1038/s42003-023-05750-w.


Sampling of Intracellular Heterogeneity of Enables Multiobjective Optimization of Genetic Devices.

Hueso-Gil A, Calles B, de Lorenzo V ACS Synth Biol. 2023; 12(6):1667-1676.

PMID: 37196337 PMC: 10278179. DOI: 10.1021/acssynbio.3c00009.


Women's contribution in understanding how topoisomerases, supercoiling, and transcription control genome organization.

Martin L, Neguembor M, Cosma M Front Mol Biosci. 2023; 10:1155825.

PMID: 37051322 PMC: 10083264. DOI: 10.3389/fmolb.2023.1155825.


DNA fluctuations reveal the size and dynamics of topological domains.

Vanderlinden W, Skoruppa E, Kolbeck P, Carlon E, Lipfert J PNAS Nexus. 2023; 1(5):pgac268.

PMID: 36712371 PMC: 9802373. DOI: 10.1093/pnasnexus/pgac268.


References
1.
Sobetzko P . Transcription-coupled DNA supercoiling dictates the chromosomal arrangement of bacterial genes. Nucleic Acids Res. 2016; 44(4):1514-24. PMC: 4770239. DOI: 10.1093/nar/gkw007. View

2.
Fulcrand G, Dages S, Zhi X, Chapagain P, Gerstman B, Dunlap D . DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli. Sci Rep. 2016; 6:19243. PMC: 4725879. DOI: 10.1038/srep19243. View

3.
Adhya S . Multipartite genetic control elements: communication by DNA loop. Annu Rev Genet. 1989; 23:227-50. DOI: 10.1146/annurev.ge.23.120189.001303. View

4.
Rovinskiy N, Agbleke A, Chesnokova O, Pang Z, Higgins N . Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet. 2012; 8(8):e1002845. PMC: 3420936. DOI: 10.1371/journal.pgen.1002845. View

5.
Postow L, Hardy C, Arsuaga J, Cozzarelli N . Topological domain structure of the Escherichia coli chromosome. Genes Dev. 2004; 18(14):1766-79. PMC: 478196. DOI: 10.1101/gad.1207504. View