» Articles » PMID: 34242585

A P53-dependent Translational Program Directs Tissue-selective Phenotypes in a Model of Ribosomopathies

Overview
Journal Dev Cell
Publisher Cell Press
Date 2021 Jul 9
PMID 34242585
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.

Citing Articles

Metabolic rewiring during bone development underlies tRNA m7G-associated primordial dwarfism.

Li Q, Jiang S, Lei K, Han H, Chen Y, Lin W J Clin Invest. 2024; 134(20).

PMID: 39255038 PMC: 11473147. DOI: 10.1172/JCI177220.


Decoding ribosome complexity: role of ribosomal proteins in cancer and disease.

Fuentes P, Pelletier J, Gentilella A NAR Cancer. 2024; 6(3):zcae032.

PMID: 39045153 PMC: 11263879. DOI: 10.1093/narcan/zcae032.


A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence.

Cheng Y, Wang S, Zhang H, Lee J, Ni C, Guo J Cell. 2024; 187(17):4770-4789.e23.

PMID: 38981482 PMC: 11344685. DOI: 10.1016/j.cell.2024.06.019.


KDM2B is required for ribosome biogenesis and its depletion unequally affects mRNA translation.

Anastas V, Chavdoula E, La Ferlita A, Soysal B, Cosentini I, Nigita G bioRxiv. 2024; .

PMID: 38826406 PMC: 11142201. DOI: 10.1101/2024.05.22.595403.


The RNA-Binding Function of Ribosomal Proteins and Ribosome Biogenesis Factors in Human Health and Disease.

Catalanotto C, Barbato C, Cogoni C, Benelli D Biomedicines. 2023; 11(11).

PMID: 38001969 PMC: 10669870. DOI: 10.3390/biomedicines11112969.


References
1.
Lee C, Kiparaki M, Blanco J, Folgado V, Ji Z, Kumar A . A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition. Dev Cell. 2018; 46(4):456-469.e4. PMC: 6261318. DOI: 10.1016/j.devcel.2018.07.003. View

2.
Sulic S, Panic L, Barkic M, Mercep M, Uzelac M, Volarevic S . Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev. 2005; 19(24):3070-82. PMC: 1315409. DOI: 10.1101/gad.359305. View

3.
Horos R, IJspeert H, Pospisilova D, Sendtner R, Andrieu-Soler C, Taskesen E . Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood. 2011; 119(1):262-72. DOI: 10.1182/blood-2011-06-358200. View

4.
Zeller R, Lopez-Rios J, Zuniga A . Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet. 2009; 10(12):845-58. DOI: 10.1038/nrg2681. View

5.
Smith T, Heger A, Sudbery I . UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2017; 27(3):491-499. PMC: 5340976. DOI: 10.1101/gr.209601.116. View