» Articles » PMID: 34197623

Transcription Factor RFX7 Governs a Tumor Suppressor Network in Response to P53 and Stress

Overview
Specialty Biochemistry
Date 2021 Jul 1
PMID 34197623
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Despite its prominence, the mechanisms through which the tumor suppressor p53 regulates most genes remain unclear. Recently, the regulatory factor X 7 (RFX7) emerged as a suppressor of lymphoid neoplasms, but its regulation and target genes mediating tumor suppression remain unknown. Here, we identify a novel p53-RFX7 signaling axis. Integrative analysis of the RFX7 DNA binding landscape and the RFX7-regulated transcriptome in three distinct cell systems reveals that RFX7 directly controls multiple established tumor suppressors, including PDCD4, PIK3IP1, MXD4, and PNRC1, across cell types and is the missing link for their activation in response to p53 and stress. RFX7 target gene expression correlates with cell differentiation and better prognosis in numerous cancer types. Interestingly, we find that RFX7 sensitizes cells to Doxorubicin by promoting apoptosis. Together, our work establishes RFX7's role as a ubiquitous regulator of cell growth and fate determination and a key node in the p53 transcriptional program.

Citing Articles

Gene regulation by convergent promoters.

Wiechens E, Vigliotti F, Siniuk K, Schwarz R, Schwab K, Riege K Nat Genet. 2025; 57(1):206-217.

PMID: 39779959 PMC: 11735407. DOI: 10.1038/s41588-024-02025-w.


p53 target ANKRA2 cooperates with RFX7 to regulate tumor suppressor genes.

Schwab K, Riege K, Coronel L, Stanko C, Forste S, Hoffmann S Cell Death Discov. 2024; 10(1):376.

PMID: 39181888 PMC: 11344851. DOI: 10.1038/s41420-024-02149-2.


Pan-cancer investigation of RFX family and associated genes identifies RFX8 as a therapeutic target in leukemia.

Cui Z, Fu Y, Zhou M, Feng H, Zhang L, Ma S Heliyon. 2024; 10(15):e35368.

PMID: 39170430 PMC: 11336603. DOI: 10.1016/j.heliyon.2024.e35368.


Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression.

Indeglia A, Murphy M Crit Rev Biochem Mol Biol. 2024; 59(1-2):128-138.

PMID: 38661126 PMC: 11209770. DOI: 10.1080/10409238.2024.2344465.


A molecular mechanism for the "digital" response of p53 to stress.

Safieh J, Chazan A, Saleem H, Vyas P, Danin-Poleg Y, Ron D Proc Natl Acad Sci U S A. 2023; 120(49):e2305713120.

PMID: 38015851 PMC: 10710088. DOI: 10.1073/pnas.2305713120.


References
1.
Manojlovic Z, Earwood R, Kato A, Stefanovic B, Kato Y . RFX7 is required for the formation of cilia in the neural tube. Mech Dev. 2014; 132:28-37. PMC: 3976564. DOI: 10.1016/j.mod.2014.02.001. View

2.
Barbie D, Tamayo P, Boehm J, Kim S, Moody S, Dunn I . Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009; 462(7269):108-12. PMC: 2783335. DOI: 10.1038/nature08460. View

3.
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T . GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017; 2017. PMC: 5467550. DOI: 10.1093/database/bax028. View

4.
Liu M, Dhanwada K, Birt D, Hecht S, Pelling J . Increase in p53 protein half-life in mouse keratinocytes following UV-B irradiation. Carcinogenesis. 1994; 15(6):1089-92. DOI: 10.1093/carcin/15.6.1089. View

5.
Wang L, Wang S, Li W . RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012; 28(16):2184-5. DOI: 10.1093/bioinformatics/bts356. View