» Articles » PMID: 34174210

Distribution and Phasing of Sequence Motifs That Facilitate CRISPR Adaptation

Overview
Journal Curr Biol
Publisher Cell Press
Specialty Biology
Date 2021 Jun 26
PMID 34174210
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR-associated proteins (Cas1 and Cas2) integrate foreign DNA at the "leader" end of CRISPR loci. Several CRISPR leader sequences are reported to contain a binding site for a DNA-bending protein called integration host factor (IHF). IHF-induced DNA bending kinks the leader of type I-E CRISPRs, recruiting an upstream sequence motif that helps dock Cas1-2 onto the first repeat of the CRISPR locus. To determine the prevalence of IHF-directed CRISPR adaptation, we analyzed 15,274 bacterial and archaeal CRISPR leaders. These experiments reveal multiple IHF binding sites and diverse upstream sequence motifs in a subset of the I-C, I-E, I-F, and II-C CRISPR leaders. We identify subtype-specific motifs and show that the phase of these motifs is critical for CRISPR adaptation. Collectively, this work clarifies the prevalence and mechanism(s) of IHF-dependent CRISPR adaptation and suggests that leader sequences and adaptation proteins may coevolve under the selective pressures of foreign genetic elements like plasmids or phages.

Citing Articles

SspA is a transcriptional regulator of CRISPR adaptation in E. coli.

Lopez S, Lee Y, Zhang K, Shipman S Nucleic Acids Res. 2024; 53(4).

PMID: 39727179 PMC: 11879090. DOI: 10.1093/nar/gkae1244.


Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays.

Santiago-Frangos A, Henriques W, Wiegand T, Gauvin C, Buyukyoruk M, Graham A Nat Struct Mol Biol. 2023; 30(11):1675-1685.

PMID: 37710013 PMC: 10872659. DOI: 10.1038/s41594-023-01097-2.


Histones direct site-specific CRISPR spacer acquisition in model archaeon.

Watts E, Garrett S, Catchpole R, Clark L, Sanders T, Marshall C Nat Microbiol. 2023; 8(9):1682-1694.

PMID: 37550505 PMC: 10823912. DOI: 10.1038/s41564-023-01446-3.


Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems.

Shmakov S, Barth Z, Makarova K, Wolf Y, Brover V, Peters J Nucleic Acids Res. 2023; 51(15):8150-8168.

PMID: 37283088 PMC: 10450183. DOI: 10.1093/nar/gkad495.


Widespread CRISPR repeat-like RNA regulatory elements in CRISPR-Cas systems.

Shmakov S, Barth Z, Makarova K, Wolf Y, Brover V, Peters J bioRxiv. 2023; .

PMID: 37090614 PMC: 10120712. DOI: 10.1101/2023.03.03.530964.


References
1.
Bolotin A, Quinquis B, Sorokin A, Ehrlich S . Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading). 2005; 151(Pt 8):2551-2561. DOI: 10.1099/mic.0.28048-0. View

2.
Crooks G, Hon G, Chandonia J, Brenner S . WebLogo: a sequence logo generator. Genome Res. 2004; 14(6):1188-90. PMC: 419797. DOI: 10.1101/gr.849004. View

3.
Mojica F, Diez-Villasenor C, Garcia-Martinez J, Soria E . Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005; 60(2):174-82. DOI: 10.1007/s00239-004-0046-3. View

4.
Fu L, Niu B, Zhu Z, Wu S, Li W . CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012; 28(23):3150-2. PMC: 3516142. DOI: 10.1093/bioinformatics/bts565. View

5.
Kim S, Loeff L, Colombo S, Jergic S, Brouns S, Joo C . Selective loading and processing of prespacers for precise CRISPR adaptation. Nature. 2020; 579(7797):141-145. DOI: 10.1038/s41586-020-2018-1. View