» Articles » PMID: 33271061

Guide RNA Categorization Enables Target Site Choice in Tn7-CRISPR-Cas Transposons

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2020 Dec 3
PMID 33271061
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR-Cas defense systems have been coopted multiple times in nature for guide RNA-directed transposition by Tn7-like elements. Prototypic Tn7 uses dedicated proteins for two targeting pathways: one targeting a neutral and conserved attachment site in the chromosome and a second directing transposition into mobile plasmids facilitating cell-to-cell transfer. We show that Tn7-CRISPR-Cas elements evolved a system of guide RNA categorization to accomplish the same two-pathway lifestyle. Multiple mechanisms allow functionally distinct guide RNAs for transposition: a conventional system capable of acquiring guide RNAs to new plasmid and phage targets and a second providing long-term memory for access to chromosomal sites upon entry into a new host. Guide RNAs are privatized to be recognized only by the transposon-adapted system via sequence specialization, mismatch tolerance, and selective regulation to avoid toxic self-targeting by endogenous CRISPR-Cas defense systems. This information reveals promising avenues to engineer guide RNAs for enhanced CRISPR-Cas functionality for genome modification.

Citing Articles

Integration of therapeutic cargo into the human genome with programmable type V-K CAST.

Liu J, Aliaga Goltsman D, Alexander L, Khayi K, Hong J, Dunham D Nat Commun. 2025; 16(1):2427.

PMID: 40082411 PMC: 11906591. DOI: 10.1038/s41467-025-57416-2.


A family of Tn7-like transposons evolved to target CRISPR repeats.

Chacon Machado L, Peters J Mob DNA. 2025; 16(1):5.

PMID: 39966887 PMC: 11837452. DOI: 10.1186/s13100-025-00344-1.


Study on the framework of ATP energy cycle system in Escherichia coli.

Ren L, Qi Y, Cao F, Zhou E Appl Microbiol Biotechnol. 2025; 109(1):42.

PMID: 39937288 PMC: 11821744. DOI: 10.1007/s00253-024-13350-9.


CRISPR in mobile genetic elements: counter-defense, inter-element competition and RNA-guided transposition.

Koonin E, Makarova K BMC Biol. 2024; 22(1):295.

PMID: 39696488 PMC: 11656645. DOI: 10.1186/s12915-024-02090-x.


Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System.

Yang P, Zhang S, Hu D, Li X, Guo Y, Guo H Int J Mol Sci. 2024; 25(23).

PMID: 39684256 PMC: 11640852. DOI: 10.3390/ijms252312544.


References
1.
Gleditzsch D, Muller-Esparza H, Pausch P, Sharma K, Dwarakanath S, Urlaub H . Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res. 2016; 44(12):5872-82. PMC: 4937334. DOI: 10.1093/nar/gkw469. View

2.
Faure G, Makarova K, Koonin E . CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity. J Mol Biol. 2018; 431(1):3-20. DOI: 10.1016/j.jmb.2018.08.030. View

3.
Peters J, Craig N . Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. Genes Dev. 2001; 15(6):737-47. PMC: 312648. DOI: 10.1101/gad.870201. View

4.
Strecker J, Ladha A, Gardner Z, Schmid-Burgk J, Makarova K, Koonin E . RNA-guided DNA insertion with CRISPR-associated transposases. Science. 2019; 365(6448):48-53. PMC: 6659118. DOI: 10.1126/science.aax9181. View

5.
Peters J, Makarova K, Shmakov S, Koonin E . Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc Natl Acad Sci U S A. 2017; 114(35):E7358-E7366. PMC: 5584455. DOI: 10.1073/pnas.1709035114. View