» Articles » PMID: 34112806

Cell Segmentation-free Inference of Cell Types from in Situ Transcriptomics Data

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Jun 11
PMID 34112806
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Multiplexed fluorescence in situ hybridization techniques have enabled cell-type identification, linking transcriptional heterogeneity with spatial heterogeneity of cells. However, inaccurate cell segmentation reduces the efficacy of cell-type identification and tissue characterization. Here, we present a method called Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation (SSAM), a robust cell segmentation-free computational framework for identifying cell-types and tissue domains in 2D and 3D. SSAM is applicable to a variety of in situ transcriptomics techniques and capable of integrating prior knowledge of cell types. We apply SSAM to three mouse brain tissue images: the somatosensory cortex imaged by osmFISH, the hypothalamic preoptic region by MERFISH, and the visual cortex by multiplexed smFISH. Here, we show that SSAM detects regions occupied by known cell types that were previously missed and discovers new cell types.

Citing Articles

Optimizing Xenium In Situ data utility by quality assessment and best-practice analysis workflows.

Marco Salas S, Kuemmerle L, Mattsson-Langseth C, Tismeyer S, Avenel C, Hu T Nat Methods. 2025; .

PMID: 40082609 DOI: 10.1038/s41592-025-02617-2.


Spatial-Omics Methods and Applications.

Kulasinghe A, Berrell N, Donovan M, Nilges B Methods Mol Biol. 2025; 2880:101-146.

PMID: 39900756 DOI: 10.1007/978-1-0716-4276-4_5.


Benchmarking cell type annotation methods for 10x Xenium spatial transcriptomics data.

Cheng J, Jin X, Smyth G, Chen Y BMC Bioinformatics. 2025; 26(1):22.

PMID: 39833693 PMC: 11744978. DOI: 10.1186/s12859-025-06044-0.


Homebuilt Imaging-Based Spatial Transcriptomics: Tertiary Lymphoid Structures as a Case Example.

Defard T, Desrentes A, Fouillade C, Mueller F Methods Mol Biol. 2024; 2864:77-105.

PMID: 39527218 DOI: 10.1007/978-1-0716-4184-2_5.


Multiplexed Immunophenotyping of Lymphoma Tissue Samples.

Schniederjohann C, Bruch P, Dietrich S, Neumann F Methods Mol Biol. 2024; 2865:375-393.

PMID: 39424733 DOI: 10.1007/978-1-0716-4188-0_16.


References
1.
Stahl P, Salmen F, Vickovic S, Lundmark A, Fernandez Navarro J, Magnusson J . Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016; 353(6294):78-82. DOI: 10.1126/science.aaf2403. View

2.
Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J . Molecular Architecture of the Mouse Nervous System. Cell. 2018; 174(4):999-1014.e22. PMC: 6086934. DOI: 10.1016/j.cell.2018.06.021. View

3.
Lubeck E, Coskun A, Zhiyentayev T, Ahmad M, Cai L . Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 2014; 11(4):360-1. PMC: 4085791. DOI: 10.1038/nmeth.2892. View

4.
Maniatis S, Aijo T, Vickovic S, Braine C, Kang K, Mollbrink A . Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 2019; 364(6435):89-93. DOI: 10.1126/science.aav9776. View

5.
Hodneland E, Kogel T, Frei D, Gerdes H, Lundervold A . CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation. Source Code Biol Med. 2013; 8(1):16. PMC: 3850890. DOI: 10.1186/1751-0473-8-16. View