» Articles » PMID: 34099178

Probing Ion Channel Macromolecular Interactions Using Fluorescence Resonance Energy Transfer

Overview
Journal Methods Enzymol
Specialty Biochemistry
Date 2021 Jun 8
PMID 34099178
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Ion channels are macromolecular complexes whose functions are exquisitely tuned by interacting proteins. Fluorescence resonance energy transfer (FRET) is a powerful methodology that is adept at quantifying ion channel protein-protein interactions in living cells. For FRET experiments, the interacting partners are tagged with appropriate donor and acceptor fluorescent proteins. If the fluorescently-labeled molecules are in close proximity, then photoexcitation of the donor results in non-radiative energy transfer to the acceptor, and subsequent fluorescence emission of the acceptor. The stoichiometry of ion channel interactions and their relative binding affinities can be deduced by quantifying both the FRET efficiency and the total number of donors and acceptors in a given cell. In this chapter, we discuss general considerations for FRET analysis of biological interactions, various strategies for estimating FRET efficiencies, and detailed protocols for construction of binding curves and determination of stoichiometry. We focus on implementation of FRET assays using a flow cytometer given its amenability for high-throughput data acquisition, enhanced accessibility, and robust analysis. This versatile methodology permits mechanistic dissection of dynamic changes in ion channel interactions.

Citing Articles

On the pixel selection criterion for the calculation of the Pearson's correlation coefficient in fluorescence microscopy.

Lopez S, Samwald S, Jones S, Faulkner C J Microsc. 2024; 297(3):304-315.

PMID: 38349020 PMC: 11808421. DOI: 10.1111/jmi.13273.


Arrhythmia-associated calmodulin variants interact with KCNQ1 to confer aberrant membrane trafficking and function.

Kang P, Woodbury L, Angsutararux P, Sambare N, Shi J, Marras M PNAS Nexus. 2023; 2(11):pgad335.

PMID: 37965565 PMC: 10642763. DOI: 10.1093/pnasnexus/pgad335.


Selective posttranslational inhibition of Caβ-associated voltage-dependent calcium channels with a functionalized nanobody.

Morgenstern T, Nirwan N, Hernandez-Ochoa E, Bibollet H, Choudhury P, Laloudakis Y Nat Commun. 2022; 13(1):7556.

PMID: 36494348 PMC: 9734117. DOI: 10.1038/s41467-022-35025-7.


Bestrophin-2 and glutamine synthetase form a complex for glutamate release.

Owji A, Yu K, Kittredge A, Wang J, Zhang Y, Yang T Nature. 2022; 611(7934):180-187.

PMID: 36289327 PMC: 9873481. DOI: 10.1038/s41586-022-05373-x.


Elementary mechanisms of calmodulin regulation of Na1.5 producing divergent arrhythmogenic phenotypes.

Kang P, Chakouri N, Diaz J, Tomaselli G, Yue D, Ben-Johny M Proc Natl Acad Sci U S A. 2021; 118(21).

PMID: 34021086 PMC: 8166197. DOI: 10.1073/pnas.2025085118.

References
1.
Isacoff E, Jan L, Minor Jr D . Conduits of life's spark: a perspective on ion channel research since the birth of neuron. Neuron. 2013; 80(3):658-74. PMC: 3867263. DOI: 10.1016/j.neuron.2013.10.040. View

2.
England C, Luo H, Cai W . HaloTag technology: a versatile platform for biomedical applications. Bioconjug Chem. 2015; 26(6):975-86. PMC: 4482335. DOI: 10.1021/acs.bioconjchem.5b00191. View

3.
Partikian A, Olveczky B, Swaminathan R, Li Y, Verkman A . Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol. 1998; 140(4):821-9. PMC: 2141758. DOI: 10.1083/jcb.140.4.821. View

4.
Papa A, Kushner J, Hennessey J, Katchman A, Zakharov S, Chen B . Adrenergic Ca1.2 Activation via Rad Phosphorylation Converges at α I-II Loop. Circ Res. 2020; 128(1):76-88. PMC: 7790865. DOI: 10.1161/CIRCRESAHA.120.317839. View

5.
Liu G, Papa A, Katchman A, Zakharov S, Roybal D, Hennessey J . Mechanism of adrenergic Ca1.2 stimulation revealed by proximity proteomics. Nature. 2020; 577(7792):695-700. PMC: 7018383. DOI: 10.1038/s41586-020-1947-z. View