» Articles » PMID: 33603203

Robust Decomposition of Cell Type Mixtures in Spatial Transcriptomics

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2021 Feb 19
PMID 33603203
Citations 361
Authors
Affiliations
Soon will be listed here.
Abstract

A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .

Citing Articles

Spotiphy enables single-cell spatial whole transcriptomics across an entire section.

Yang J, Zheng Z, Jiao Y, Yu K, Bhatara S, Yang X Nat Methods. 2025; .

PMID: 40074951 DOI: 10.1038/s41592-025-02622-5.


Single-cell RNA sequencing and spatial transcriptome analysis in bladder cancer: Current status and future perspectives.

Yoshihara K, Ito K, Kimura T, Yamamoto Y, Urabe F Bladder Cancer. 2025; 11(1):23523735251322017.

PMID: 40034247 PMC: 11864234. DOI: 10.1177/23523735251322017.


STModule: identifying tissue modules to uncover spatial components and characteristics of transcriptomic landscapes.

Wang R, Qian Y, Guo X, Song F, Xiong Z, Cai S Genome Med. 2025; 17(1):18.

PMID: 40033360 PMC: 11874447. DOI: 10.1186/s13073-025-01441-9.


Joint imputation and deconvolution of gene expression across spatial transcriptomics platforms.

Zheng H, Sarkar H, Raphael B bioRxiv. 2025; .

PMID: 40027720 PMC: 11870578. DOI: 10.1101/2025.02.17.638195.


STEAM: Spatial Transcriptomics Evaluation Algorithm and Metric for clustering performance.

Reynoso S, Schiebout C, Krishna R, Zhang F bioRxiv. 2025; .

PMID: 40027655 PMC: 11870515. DOI: 10.1101/2025.02.17.636505.


References
1.
Vickovic S, Eraslan G, Salmen F, Klughammer J, Stenbeck L, Schapiro D . High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods. 2019; 16(10):987-990. PMC: 6765407. DOI: 10.1038/s41592-019-0548-y. View

2.
Pelkey K, Chittajallu R, Craig M, Tricoire L, Wester J, McBain C . Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev. 2017; 97(4):1619-1747. PMC: 6151493. DOI: 10.1152/physrev.00007.2017. View

3.
Cembrowski M, Wang L, Lemire A, Copeland M, DiLisio S, Clements J . The subiculum is a patchwork of discrete subregions. Elife. 2018; 7. PMC: 6226292. DOI: 10.7554/eLife.37701. View

4.
Edsgard D, Johnsson P, Sandberg R . Identification of spatial expression trends in single-cell gene expression data. Nat Methods. 2018; 15(5):339-342. PMC: 6314435. DOI: 10.1038/nmeth.4634. View

5.
Sun S, Zhu J, Zhou X . Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat Methods. 2020; 17(2):193-200. PMC: 7233129. DOI: 10.1038/s41592-019-0701-7. View