» Articles » PMID: 33910058

Age-dependent Instability of Mature Neuronal Fate in Induced Neurons from Alzheimer's Patients

Abstract

Sporadic Alzheimer's disease (AD) exclusively affects elderly people. Using direct conversion of AD patient fibroblasts into induced neurons (iNs), we generated an age-equivalent neuronal model. AD patient-derived iNs exhibit strong neuronal transcriptome signatures characterized by downregulation of mature neuronal properties and upregulation of immature and progenitor-like signaling pathways. Mapping iNs to longitudinal neuronal differentiation trajectory data demonstrated that AD iNs reflect a hypo-mature neuronal identity characterized by markers of stress, cell cycle, and de-differentiation. Epigenetic landscape profiling revealed an underlying aberrant neuronal state that shares similarities with malignant transformation and age-dependent epigenetic erosion. To probe for the involvement of aging, we generated rejuvenated iPSC-derived neurons that showed no significant disease-related transcriptome signatures, a feature that is consistent with epigenetic clock and brain ontogenesis mapping, which indicate that fibroblast-derived iNs more closely reflect old adult brain stages. Our findings identify AD-related neuronal changes as age-dependent cellular programs that impair neuronal identity.

Citing Articles

-A152T mutation drives neuronal hyperactivity through Fyn-NMDAR signaling in human iPSC-Derived neurons: Insights into Alzheimer's pathogenesis.

Itsuno M, Tanabe H, Sano E, Sasaki T, Oyama C, Bannai H Regen Ther. 2025; 28():201-213.

PMID: 39811068 PMC: 11730958. DOI: 10.1016/j.reth.2024.12.009.


Fate erasure logic of gene networks underlying direct neuronal conversion of somatic cells by microRNAs.

Cates K, Yuan L, Yang Y, Yoo A Cell Rep. 2025; 44(1):115153.

PMID: 39756035 PMC: 11834941. DOI: 10.1016/j.celrep.2024.115153.


Integrative multiomics reveals common endotypes across PSEN1, PSEN2, and APP mutations in familial Alzheimer's disease.

Valdes P, Caldwell A, Liu Q, Fitzgerald M, Ramachandran S, Karch C Alzheimers Res Ther. 2025; 17(1):5.

PMID: 39754192 PMC: 11699654. DOI: 10.1186/s13195-024-01659-6.


Primary cartilage transcriptional signatures reflect cell-type-specific molecular pathways underpinning osteoarthritis.

Katsoula G, Lawrence J, Arruda A, Tutino M, Balogh P, Southam L Am J Hum Genet. 2024; 111(12):2735-2755.

PMID: 39579762 PMC: 11639091. DOI: 10.1016/j.ajhg.2024.10.019.


Approaches for studying neuroimmune interactions in Alzheimer's disease.

Lin C, Tian Y, Tanzi R, Jorfi M Trends Immunol. 2024; 45(12):971-986.

PMID: 39537528 PMC: 11624993. DOI: 10.1016/j.it.2024.10.002.


References
1.
Wagner I, Wang H, Weissert P, Straube W, Shevchenko A, Gentzel M . Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration. Dev Cell. 2017; 40(6):608-617.e6. DOI: 10.1016/j.devcel.2017.03.002. View

2.
McShea A, Wahl A, Smith M . Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer disease. Med Hypotheses. 1999; 52(6):525-7. DOI: 10.1054/mehy.1997.0680. View

3.
Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young J . Single-cell transcriptomic analysis of Alzheimer's disease. Nature. 2019; 570(7761):332-337. PMC: 6865822. DOI: 10.1038/s41586-019-1195-2. View

4.
Woodruff G, Young J, Martinez F, Buen F, Gore A, Kinaga J . The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep. 2013; 5(4):974-85. PMC: 3867011. DOI: 10.1016/j.celrep.2013.10.018. View

5.
Gu N, Tamada Y, Imai A, Palfalvi G, Kabeya Y, Shigenobu S . DNA damage triggers reprogramming of differentiated cells into stem cells in Physcomitrella. Nat Plants. 2020; 6(9):1098-1105. DOI: 10.1038/s41477-020-0745-9. View