» Articles » PMID: 33789710

MTSplice Predicts Effects of Genetic Variants on Tissue-specific Splicing

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2021 Apr 1
PMID 33789710
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

We develop the free and open-source model Multi-tissue Splicing (MTSplice) to predict the effects of genetic variants on splicing of cassette exons in 56 human tissues. MTSplice combines MMSplice, which models constitutive regulatory sequences, with a new neural network that models tissue-specific regulatory sequences. MTSplice outperforms MMSplice on predicting tissue-specific variations associated with genetic variants in most tissues of the GTEx dataset, with largest improvements on brain tissues. Furthermore, MTSplice predicts that autism-associated de novo mutations are enriched for variants affecting splicing specifically in the brain. We foresee that MTSplice will aid interpreting variants associated with tissue-specific disorders.

Citing Articles

Generative modeling for RNA splicing predictions and design.

Wu D, Maus N, Jha A, Yang K, Wales-McGrath B, Jewell S bioRxiv. 2025; .

PMID: 39896553 PMC: 11785043. DOI: 10.1101/2025.01.20.633986.


Machine learning-optimized targeted detection of alternative splicing.

Yang K, Islas N, Jewell S, Wu D, Jha A, Radens C Nucleic Acids Res. 2024; 53(3).

PMID: 39727154 PMC: 11797022. DOI: 10.1093/nar/gkae1260.


Machine learning-optimized targeted detection of alternative splicing.

Yang K, Islas N, Jewell S, Jha A, Radens C, Pleiss J bioRxiv. 2024; .

PMID: 39386495 PMC: 11463589. DOI: 10.1101/2024.09.20.614162.


Decoding biology with massively parallel reporter assays and machine learning.

La Fleur A, Shi Y, Seelig G Genes Dev. 2024; 38(17-20):843-865.

PMID: 39362779 PMC: 11535156. DOI: 10.1101/gad.351800.124.


From computational models of the splicing code to regulatory mechanisms and therapeutic implications.

Capitanchik C, Wilkins O, Wagner N, Gagneur J, Ule J Nat Rev Genet. 2024; 26(3):171-190.

PMID: 39358547 DOI: 10.1038/s41576-024-00774-2.


References
1.
Nair S, Kim D, Perricone J, Kundaje A . Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts. Bioinformatics. 2019; 35(14):i108-i116. PMC: 6612838. DOI: 10.1093/bioinformatics/btz352. View

2.
Konieczny P, Stepniak-Konieczna E, Sobczak K . MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res. 2014; 42(17):10873-87. PMC: 4176163. DOI: 10.1093/nar/gku767. View

3.
Jian X, Boerwinkle E, Liu X . In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 2014; 42(22):13534-44. PMC: 4267638. DOI: 10.1093/nar/gku1206. View

4.
Llorian M, Schwartz S, Clark T, Hollander D, Tan L, Spellman R . Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat Struct Mol Biol. 2010; 17(9):1114-23. PMC: 2933513. DOI: 10.1038/nsmb.1881. View

5.
Jiang Y, Yuen R, Jin X, Wang M, Chen N, Wu X . Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013; 93(2):249-63. PMC: 3738824. DOI: 10.1016/j.ajhg.2013.06.012. View