6.
Zeng T, Li Y
. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 2022; 23(1):103.
PMC: 9022248.
DOI: 10.1186/s13059-022-02664-4.
View
7.
Xu C, Zhang G, Wang X, Huang X, Zhang J, Han S
. Ptpn23 Controls Cardiac T-Tubule Patterning by Promoting the Assembly of Dystrophin-Glycoprotein Complex. Circulation. 2024; 149(17):1375-1390.
PMC: 11039371.
DOI: 10.1161/CIRCULATIONAHA.123.065767.
View
8.
Maurin M, Ranjouri M, Megino-Luque C, Newberg J, Du D, Martin K
. RBFOX2 deregulation promotes pancreatic cancer progression and metastasis through alternative splicing. Nat Commun. 2023; 14(1):8444.
PMC: 10730836.
DOI: 10.1038/s41467-023-44126-w.
View
9.
Wang Z, Burge C
. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA. 2008; 14(5):802-13.
PMC: 2327353.
DOI: 10.1261/rna.876308.
View
10.
Avsec Z, Agarwal V, Visentin D, Ledsam J, Grabska-Barwinska A, Taylor K
. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods. 2021; 18(10):1196-1203.
PMC: 8490152.
DOI: 10.1038/s41592-021-01252-x.
View
11.
Van Nostrand E, Freese P, Pratt G, Wang X, Wei X, Xiao R
. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020; 583(7818):711-719.
PMC: 7410833.
DOI: 10.1038/s41586-020-2077-3.
View
12.
Cheng J, Celik M, Kundaje A, Gagneur J
. MTSplice predicts effects of genetic variants on tissue-specific splicing. Genome Biol. 2021; 22(1):94.
PMC: 8011109.
DOI: 10.1186/s13059-021-02273-7.
View
13.
Griffiths R, Hernandez-Lobato J
. Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chem Sci. 2020; 11(2):577-586.
PMC: 7067240.
DOI: 10.1039/c9sc04026a.
View
14.
Singh S, Yeat N, Wang Y, Lin S, Kuo I, Wu K
. PTPN23 ubiquitination by WDR4 suppresses EGFR and c-MET degradation to define a lung cancer therapeutic target. Cell Death Dis. 2023; 14(10):671.
PMC: 10567730.
DOI: 10.1038/s41419-023-06201-4.
View
15.
Pan Q, Shai O, Lee L, Frey B, Blencowe B
. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008; 40(12):1413-5.
DOI: 10.1038/ng.259.
View
16.
Barash Y, Vaquero-Garcia J, Gonzalez-Vallinas J, Xiong H, Gao W, Lee L
. AVISPA: a web tool for the prediction and analysis of alternative splicing. Genome Biol. 2013; 14(10):R114.
PMC: 4014802.
DOI: 10.1186/gb-2013-14-10-r114.
View
17.
Yeo G, Burge C
. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004; 11(2-3):377-94.
DOI: 10.1089/1066527041410418.
View
18.
Yang K, Islas N, Jewell S, Wu D, Jha A, Radens C
. Machine learning-optimized targeted detection of alternative splicing. Nucleic Acids Res. 2024; 53(3).
PMC: 11797022.
DOI: 10.1093/nar/gkae1260.
View
19.
Siepel A, Bejerano G, Pedersen J, Hinrichs A, Hou M, Rosenbloom K
. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15(8):1034-50.
PMC: 1182216.
DOI: 10.1101/gr.3715005.
View
20.
Xiong H, Barash Y, Frey B
. Bayesian prediction of tissue-regulated splicing using RNA sequence and cellular context. Bioinformatics. 2011; 27(18):2554-62.
DOI: 10.1093/bioinformatics/btr444.
View