» Articles » PMID: 33614528

Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections

Overview
Date 2021 Feb 22
PMID 33614528
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial infections caused by intracellular pathogens are difficult to control. Conventional antibiotic therapies are often ineffective, as high doses are needed to increase the number of antibiotics that will cross the host cell membrane to act on the intracellular bacterium. Moreover, higher doses of antibiotics may lead to elevated severe toxic effects against host cells. In this context, antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) have shown great potential to treat such infections by acting directly on the intracellular pathogenic bacterium or performing the delivery of cargos with antibacterial activities. Therefore, in this mini-review, we cover the main AMPs and CPPs described to date, aiming at intracellular bacterial infection treatment. Moreover, we discuss some of the proposed mechanisms of action for these peptide classes and their conjugation with other antimicrobials.

Citing Articles

Role of Peptide Associations in Enhancing the Antimicrobial Activity of Adepantins: Comparative Molecular Dynamics Simulations and Design Assessments.

Males M, Juretic D, Zoranic L Int J Mol Sci. 2024; 25(22).

PMID: 39596078 PMC: 11593906. DOI: 10.3390/ijms252212009.


Intracellular bactericidal activity and action mechanism of MDP1 antimicrobial peptide against VRSA and MRSA in human endothelial cells.

Dashtbin S, Razavi S, Ganjali Koli M, Barneh F, Ekhtiari-Sadegh S, Akbari R Front Microbiol. 2024; 15:1416995.

PMID: 39252832 PMC: 11381295. DOI: 10.3389/fmicb.2024.1416995.


Optimizing Antimicrobial Peptide Design: Integration of Cell-Penetrating Peptides, Amyloidogenic Fragments, and Amino Acid Residue Modifications.

Kravchenko S, Domnin P, Grishin S, Zakhareva A, Zakharova A, Mustaeva L Int J Mol Sci. 2024; 25(11).

PMID: 38892216 PMC: 11173194. DOI: 10.3390/ijms25116030.


Bactericidal Permeability-Increasing Protein (BPI) Inhibits Growth.

Guzman-Beltran S, Juarez E, Cruz-Munoz B, Paez-Cisneros C, Sarabia C, Gonzalez Y Biomolecules. 2024; 14(4).

PMID: 38672491 PMC: 11048543. DOI: 10.3390/biom14040475.


Pharmacokinetics and pharmacodynamics of antibacterial peptide NZX in Staphylococcus aureus mastitis mouse model.

Zheng X, Yang N, Mao R, Hao Y, Teng D, Wang J Appl Microbiol Biotechnol. 2024; 108(1):260.

PMID: 38472422 PMC: 11636681. DOI: 10.1007/s00253-024-13101-w.


References
1.
Arnett E, Lehrer R, Pratikhya P, Lu W, Seveau S . Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes. Cell Microbiol. 2010; 13(4):635-51. DOI: 10.1111/j.1462-5822.2010.01563.x. View

2.
Silva T, Gomes M . Immuno-Stimulatory Peptides as a Potential Adjunct Therapy against Intra-Macrophagic Pathogens. Molecules. 2017; 22(8). PMC: 6152048. DOI: 10.3390/molecules22081297. View

3.
Luca V, Stringaro A, Colone M, Pini A, Mangoni M . Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci. 2013; 70(15):2773-86. PMC: 11113931. DOI: 10.1007/s00018-013-1291-7. View

4.
Loeuillet C, Martinon F, Perez C, Munoz M, Thome M, Meylan P . Mycobacterium tuberculosis subverts innate immunity to evade specific effectors. J Immunol. 2006; 177(9):6245-55. DOI: 10.4049/jimmunol.177.9.6245. View

5.
Mitchell G, Chen C, Portnoy D . Strategies Used by Bacteria to Grow in Macrophages. Microbiol Spectr. 2016; 4(3). PMC: 4922531. DOI: 10.1128/microbiolspec.MCHD-0012-2015. View