» Articles » PMID: 33575560

Identifying Microbial Species by Single-molecule DNA Optical Mapping and Resampling Statistics

Abstract

Single-molecule DNA mapping has the potential to serve as a powerful complement to high-throughput sequencing in metagenomic analysis. Offering longer read lengths and forgoing the need for complex library preparation and amplification, mapping stands to provide an unbiased view into the composition of complex viromes and/or microbiomes. To fully enable mapping-based metagenomics, sensitivity and specificity of DNA map analysis and identification need to be improved. Using detailed simulations and experimental data, we first demonstrate how fluorescence imaging of surface stretched, sequence specifically labeled DNA fragments can yield highly sensitive identification of targets. Second, a new analysis technique is introduced to increase specificity of the analysis, allowing even closely related species to be resolved. Third, we show how an increase in resolution improves sensitivity. Finally, we demonstrate that these methods are capable of identifying species with long genomes such as bacteria with high sensitivity.

Citing Articles

Sequencing and Optical Genome Mapping for the Adventurous Chemist.

Ruppeka Rupeika E, DHuys L, Leen V, Hofkens J Chem Biomed Imaging. 2024; 2(12):784-807.

PMID: 39735829 PMC: 11673194. DOI: 10.1021/cbmi.4c00060.


The potential of including the microbiome as biomarker in population-based health studies: methods and benefits.

Buytaers F, Berger N, Van der Heyden J, Roosens N, de Keersmaecker S Front Public Health. 2024; 12:1467121.

PMID: 39507669 PMC: 11538166. DOI: 10.3389/fpubh.2024.1467121.


OM2Seq: learning retrieval embeddings for optical genome mapping.

Nogin Y, Sapir D, Zur T, Weinberger N, Belinkov Y, Ebenstein Y Bioinform Adv. 2024; 4(1):vbae079.

PMID: 38915884 PMC: 11194751. DOI: 10.1093/bioadv/vbae079.


Optical Mapping: Detecting Genomic Resistance Cassettes in MRSA.

Ruppeka-Rupeika E, Abakumov S, Engelbrecht M, Chen X, do Carmo Linhares D, Bouwens A ACS Omega. 2024; 9(8):8862-8873.

PMID: 38434835 PMC: 10905696. DOI: 10.1021/acsomega.3c05902.


Design of optimal labeling patterns for optical genome mapping via information theory.

Nogin Y, Bar-Lev D, Hanania D, Zur T, Ebenstein Y, Yaakobi E Bioinformatics. 2023; 39(10).

PMID: 37758248 PMC: 10563147. DOI: 10.1093/bioinformatics/btad601.


References
1.
Vranken C, Deen J, Dirix L, Stakenborg T, Dehaen W, Leen V . Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry. Nucleic Acids Res. 2014; 42(7):e50. PMC: 3985630. DOI: 10.1093/nar/gkt1406. View

2.
Lukinavicius G, Lapiene V, Stasevskij Z, Dalhoff C, Weinhold E, Klimasauskas S . Targeted labeling of DNA by methyltransferase-directed transfer of activated groups (mTAG). J Am Chem Soc. 2007; 129(10):2758-9. DOI: 10.1021/ja0691876. View

3.
. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486(7402):207-14. PMC: 3564958. DOI: 10.1038/nature11234. View

4.
Hirsch M, Wareham R, Martin-Fernandez M, Hobson M, Rolfe D . A stochastic model for electron multiplication charge-coupled devices--from theory to practice. PLoS One. 2013; 8(1):e53671. PMC: 3561409. DOI: 10.1371/journal.pone.0053671. View

5.
McCaffrey J, Sibert J, Zhang B, Zhang Y, Hu W, Riethman H . CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis. Nucleic Acids Res. 2015; 44(2):e11. PMC: 4737172. DOI: 10.1093/nar/gkv878. View