» Articles » PMID: 33478224

Electrical DNA Sequence Mapping Using Oligodeoxynucleotide Labels and Nanopores

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2021 Jan 22
PMID 33478224
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Identifying DNA species is crucial for diagnostics. For DNA identification, single-molecule DNA sequence mapping is an alternative to DNA sequencing toward fast point-of-care testing, which traditionally relies on targeting and labeling DNA sequences with fluorescent labels and readout using optical imaging methods. A nanopore is a promising sensor as a complement to optical mapping with advantages of electric measurement suitable for portable devices and potential for high resolution. Here, we demonstrate a high-resolution nanopore-based DNA sequence mapping by labeling specific short sequence motifs with oligodeoxynucleotides (ODNs) using DNA methyltransferase (MTase) and detecting them using nanopores. We successfully detected ODNs down to the size of 11 nucleotides without introducing extra reporters and resolved neighboring sites with a distance of 141 bp (∼48 nm) on a single DNA molecule. To accurately locate the sequence motif positions on DNA, a nanopore data analysis method is proposed by considering DNA velocity change through nanopores and using ensemble statistics to translate the time-dependent signals to the location information. Our platform enables high-resolution detection of small labels on DNA and high-accuracy localization of them for DNA species identification in an all-electrical format. The method presents an alternative to optical techniques relying on fluorescent labels and is promising for miniature-scale integration for diagnostic applications.

Citing Articles

Identification of nine mammal monosaccharides by solid-state nanopores.

Sun Y, Mi Z, Chen X, Li J, Lu J, Shan X Sci Rep. 2024; 14(1):32000.

PMID: 39738399 PMC: 11686368. DOI: 10.1038/s41598-024-83690-z.


Coupled nanopores for single-molecule detection.

Chou Y, Lin C, Castan A, Chen J, Keneipp R, Yasini P Nat Nanotechnol. 2024; 19(11):1686-1692.

PMID: 39143316 DOI: 10.1038/s41565-024-01746-7.


DNA Barcodes Using a Dual Nanopore Device.

Seth S, Bhattacharya A Methods Mol Biol. 2024; 2744:197-211.

PMID: 38683320 PMC: 11442030. DOI: 10.1007/978-1-0716-3581-0_12.


Identification of tagged glycans with a protein nanopore.

Li M, Xiong Y, Cao Y, Zhang C, Li Y, Ning H Nat Commun. 2023; 14(1):1737.

PMID: 36977665 PMC: 10050315. DOI: 10.1038/s41467-023-37348-5.


Discrimination of RNA fiber structures using solid-state nanopores.

Tripathi P, Chandler M, Maffeo C, Fallahi A, Makhamreh A, Halman J Nanoscale. 2022; 14(18):6866-6875.

PMID: 35441627 PMC: 9520586. DOI: 10.1039/d1nr08002d.


References
1.
Fragasso A, Schmid S, Dekker C . Comparing Current Noise in Biological and Solid-State Nanopores. ACS Nano. 2020; 14(2):1338-1349. PMC: 7045697. DOI: 10.1021/acsnano.9b09353. View

2.
Li J, Gershow M, Stein D, Brandin E, Golovchenko J . DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater. 2003; 2(9):611-5. DOI: 10.1038/nmat965. View

3.
Gottfried A, Weinhold E . Sequence-specific covalent labelling of DNA. Biochem Soc Trans. 2011; 39(2):623-8. DOI: 10.1042/BST0390623. View

4.
Bell N, Keyser U . Specific protein detection using designed DNA carriers and nanopores. J Am Chem Soc. 2015; 137(5):2035-41. PMC: 4353036. DOI: 10.1021/ja512521w. View

5.
Weckman N, Ermann N, Gutierrez R, Chen K, Graham J, Tivony R . Multiplexed DNA Identification Using Site Specific dCas9 Barcodes and Nanopore Sensing. ACS Sens. 2019; 4(8):2065-2072. DOI: 10.1021/acssensors.9b00686. View