» Articles » PMID: 37758248

Design of Optimal Labeling Patterns for Optical Genome Mapping Via Information Theory

Overview
Journal Bioinformatics
Specialty Biology
Date 2023 Sep 27
PMID 37758248
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Optical genome mapping (OGM) is a technique that extracts partial genomic information from optically imaged and linearized DNA fragments containing fluorescently labeled short sequence patterns. This information can be used for various genomic analyses and applications, such as the detection of structural variations and copy-number variations, epigenomic profiling, and microbial species identification. Currently, the choice of labeled patterns is based on the available biochemical methods and is not necessarily optimized for the application.

Results: In this work, we develop a model of OGM based on information theory, which enables the design of optimal labeling patterns for specific applications and target organism genomes. We validated the model through experimental OGM on human DNA and simulations on bacterial DNA. Our model predicts up to 10-fold improved accuracy by optimal choice of labeling patterns, which may guide future development of OGM biochemical labeling methods and significantly improve its accuracy and yield for applications such as epigenomic profiling and cultivation-free pathogen identification in clinical samples.

Availability And Implementation: https://github.com/yevgenin/PatternCode.

Citing Articles

OM2Seq: learning retrieval embeddings for optical genome mapping.

Nogin Y, Sapir D, Zur T, Weinberger N, Belinkov Y, Ebenstein Y Bioinform Adv. 2024; 4(1):vbae079.

PMID: 38915884 PMC: 11194751. DOI: 10.1093/bioadv/vbae079.

References
1.
Nogin Y, Zur T, Margalit S, Barzilai I, Alalouf O, Ebenstein Y . DeepOM: single-molecule optical genome mapping via deep learning. Bioinformatics. 2023; 39(3). PMC: 10049785. DOI: 10.1093/bioinformatics/btad137. View

2.
Dehkordi S, Luebeck J, Bafna V . FaNDOM: Fast nested distance-based seeding of optical maps. Patterns (N Y). 2021; 2(5):100248. PMC: 8134938. DOI: 10.1016/j.patter.2021.100248. View

3.
Deen J, Sempels W, De Dier R, Vermant J, Dedecker P, Hofkens J . Combing of genomic DNA from droplets containing picograms of material. ACS Nano. 2015; 9(1):809-16. PMC: 4344373. DOI: 10.1021/nn5063497. View

4.
Margalit S, Abramson Y, Sharim H, Manber Z, Bhattacharya S, Chen Y . Long reads capture simultaneous enhancer-promoter methylation status for cell-type deconvolution. Bioinformatics. 2021; 37(Suppl_1):i327-i333. PMC: 8275347. DOI: 10.1093/bioinformatics/btab306. View

5.
Muller V, Nyblom M, Johnning A, Wrande M, Dvirnas A, Kk S . Cultivation-Free Typing of Bacteria Using Optical DNA Mapping. ACS Infect Dis. 2020; 6(5):1076-1084. PMC: 7304876. DOI: 10.1021/acsinfecdis.9b00464. View