» Articles » PMID: 33462297

Endogenous Zebrafish Proneural Cre Drivers Generated by CRISPR/Cas9 Short Homology Directed Targeted Integration

Overview
Journal Sci Rep
Specialty Science
Date 2021 Jan 19
PMID 33462297
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

We previously reported efficient precision targeted integration of reporter DNA in zebrafish and human cells using CRISPR/Cas9 and short regions of homology. Here, we apply this strategy to isolate zebrafish Cre recombinase drivers whose spatial and temporal restricted expression mimics endogenous genes. A 2A-Cre recombinase transgene with 48 bp homology arms was targeted into proneural genes ascl1b, olig2 and neurod1. We observed high rates of germline transmission ranging from 10 to 100% (2/20 olig2; 1/5 neurod1; 3/3 ascl1b). The transgenic lines Tg(ascl1b-2A-Cre), Tg(olig2-2A-Cre), and Tg(neurod1-2A-Cre) expressed functional Cre recombinase in the expected proneural cell populations. Somatic targeting of 2A-CreERT2 into neurod1 resulted in tamoxifen responsive recombination in the nervous system. The results demonstrate Cre recombinase expression is driven by the native promoter and regulatory elements of the targeted genes. This approach provides a straightforward, efficient, and cost-effective method to generate cell type specific zebrafish Cre and CreERT2 drivers, overcoming challenges associated with promoter-BAC and transposon mediated transgenics.

Citing Articles

Lineage labeling with zebrafish Cre and CreERT2 recombinase CRISPR knock-ins.

Ming Z, Liu F, Moran H, Lalonde R, Adams M, Restrepo N bioRxiv. 2024; .

PMID: 39677658 PMC: 11643050. DOI: 10.1101/2024.12.04.626907.


Fluorescent Tagging of Endogenous FOXO for Live Imaging and Pull-Down Assays.

Suner I, Singh S Methods Mol Biol. 2024; 2871:145-153.

PMID: 39565585 DOI: 10.1007/978-1-0716-4217-7_13.


Generation of a Zebrafish Knock-In Model Recapitulating Childhood ETV6::RUNX1-Positive B-Cell Precursor Acute Lymphoblastic Leukemia.

Zapilko V, Moisio S, Parikka M, Heinaniemi M, Lohi O Cancers (Basel). 2023; 15(24).

PMID: 38136366 PMC: 10871125. DOI: 10.3390/cancers15245821.


The role of cilia during organogenesis in zebrafish.

Liu J, Xie H, Wu M, Hu Y, Kang Y Open Biol. 2023; 13(12):230228.

PMID: 38086423 PMC: 10715920. DOI: 10.1098/rsob.230228.


Efficient knock-in method enabling lineage tracing in zebrafish.

Mi J, Andersson O Life Sci Alliance. 2023; 6(5).

PMID: 36878640 PMC: 9990459. DOI: 10.26508/lsa.202301944.


References
1.
Sturm D, Orr B, Toprak U, Hovestadt V, Jones D, Capper D . New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell. 2016; 164(5):1060-1072. PMC: 5139621. DOI: 10.1016/j.cell.2016.01.015. View

2.
Liu K, Jin H, Zhou B . Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies. J Biol Chem. 2020; 295(19):6413-6424. PMC: 7212637. DOI: 10.1074/jbc.REV120.011631. View

3.
Hans S, Kaslin J, Freudenreich D, Brand M . Temporally-controlled site-specific recombination in zebrafish. PLoS One. 2009; 4(2):e4640. PMC: 2645673. DOI: 10.1371/journal.pone.0004640. View

4.
Borodovsky N, Ponomaryov T, Frenkel S, Levkowitz G . Neural protein Olig2 acts upstream of the transcriptional regulator Sim1 to specify diencephalic dopaminergic neurons. Dev Dyn. 2009; 238(4):826-34. DOI: 10.1002/dvdy.21894. View

5.
Shin J, Chen J, Solnica-Krezel L . Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development. 2014; 141(19):3807-18. PMC: 4197590. DOI: 10.1242/dev.108019. View