» Articles » PMID: 33420163

Host Mitochondrial Transcriptome Response to SARS-CoV-2 in Multiple Cell Models and Clinical Samples

Overview
Journal Sci Rep
Specialty Science
Date 2021 Jan 9
PMID 33420163
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

SARS-CoV-2 induces a muted innate immune response compared to other respiratory viruses. Mitochondrial dynamics might partially mediate this effect of SARS-CoV-2 on innate immunity. Polypeptides encoded by open reading frames of SARS-CoV and SARS-CoV-2 have been shown to localize to mitochondria and disrupt Mitochondrial Antiviral Signaling (MAVS) protein signaling. Therefore, we hypothesized that SARS-CoV-2 would distinctly regulate the mitochondrial transcriptome. We analyzed multiple publicly available RNASeq data derived from primary cells, cell lines, and clinical samples (i.e., BALF and lung). We report that SARS-CoV-2 did not dramatically regulate (1) mtDNA-encoded gene expression or (2) MAVS expression, and (3) SARS-CoV-2 downregulated nuclear-encoded mitochondrial (NEM) genes related to cellular respiration and Complex I.

Citing Articles

Post infectious fatigue and circadian rhythm disruption in long-COVID and other infections: a need for further research.

Livieratos A, Lockley S, Tsiodras S EClinicalMedicine. 2025; 80:103073.

PMID: 39896874 PMC: 11787434. DOI: 10.1016/j.eclinm.2025.103073.


A naturally occurring mitochondrial genome variant confers broad protection from infection in Drosophila.

Salminen T, Vesala L, Basikhina Y, Kutzer M, Tuomela T, Lucas R PLoS Genet. 2024; 20(11):e1011476.

PMID: 39527645 PMC: 11614270. DOI: 10.1371/journal.pgen.1011476.


A Gene Cluster of Mitochondrial Complexes Contributes to the Cognitive Decline of COVID-19 Infection.

Xu W, An X, Chen M, Ma J, Wang X, Yang J Mol Neurobiol. 2024; .

PMID: 39271627 DOI: 10.1007/s12035-024-04471-3.


Post-Acute Sequelae and Mitochondrial Aberration in SARS-CoV-2 Infection.

Ward C, Schlichtholz B Int J Mol Sci. 2024; 25(16).

PMID: 39201736 PMC: 11354507. DOI: 10.3390/ijms25169050.


Mechanisms of long COVID: An updated review.

Liu Y, Gu X, Li H, Zhang H, Xu J Chin Med J Pulm Crit Care Med. 2024; 1(4):231-240.

PMID: 39171285 PMC: 11332859. DOI: 10.1016/j.pccm.2023.10.003.


References
1.
Wu K, Fazal F, Parker K, Zou J, Chang H . RNA-GPS Predicts SARS-CoV-2 RNA Residency to Host Mitochondria and Nucleolus. Cell Syst. 2020; 11(1):102-108.e3. PMC: 7305881. DOI: 10.1016/j.cels.2020.06.008. View

2.
Yoshimoto F . The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 2020; 39(3):198-216. PMC: 7245191. DOI: 10.1007/s10930-020-09901-4. View

3.
Shao H, Lan D, Duan Z, Liu Z, Min J, Zhang L . Upregulation of mitochondrial gene expression in PBMC from convalescent SARS patients. J Clin Immunol. 2006; 26(6):546-54. PMC: 7086694. DOI: 10.1007/s10875-006-9046-y. View

4.
Jiang H, Zhang H, Meng Q, Xie J, Li Y, Chen H . SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell Mol Immunol. 2020; 17(9):998-1000. PMC: 7387808. DOI: 10.1038/s41423-020-0514-8. View

5.
Lee C, Yen K, Cohen P . Humanin: a harbinger of mitochondrial-derived peptides?. Trends Endocrinol Metab. 2013; 24(5):222-8. PMC: 3641182. DOI: 10.1016/j.tem.2013.01.005. View