» Articles » PMID: 33376788

Deep Learning for Prediction and Optimization of Fast-Flow Peptide Synthesis

Overview
Journal ACS Cent Sci
Specialty Chemistry
Date 2020 Dec 30
PMID 33376788
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The chemical synthesis of polypeptides involves stepwise formation of amide bonds on an immobilized solid support. The high yields required for efficient incorporation of each individual amino acid in the growing chain are often impacted by sequence-dependent events such as aggregation. Here, we apply deep learning over ultraviolet-visible (UV-vis) analytical data collected from 35 427 individual fluorenylmethyloxycarbonyl (Fmoc) deprotection reactions performed with an automated fast-flow peptide synthesizer. The integral, height, and width of these time-resolved UV-vis deprotection traces indirectly allow for analysis of the iterative amide coupling cycles on resin. The computational model maps structural representations of amino acids and peptide sequences to experimental synthesis parameters and predicts the outcome of deprotection reactions with less than 6% error. Our deep-learning approach enables experimentally aware computational design for prediction of Fmoc deprotection efficiency and minimization of aggregation events, building the foundation for real-time optimization of peptide synthesis in flow.

Citing Articles

Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications.

Buchanan D, Mori S, Chadli A, Panda S Biomedicines. 2025; 13(1).

PMID: 39857823 PMC: 11763372. DOI: 10.3390/biomedicines13010240.


A Versatile "Synthesis Tag" (SynTag) for the Chemical Synthesis of Aggregating Peptides and Proteins.

Burgisser H, Williams E, Jeandin A, Lescure R, Premanand A, Wang S J Am Chem Soc. 2024; 146(50):34887-34899.

PMID: 39639492 PMC: 11664589. DOI: 10.1021/jacs.4c14247.


Therapeutic peptide development revolutionized: Harnessing the power of artificial intelligence for drug discovery.

Hashemi S, Vosough P, Taghizadeh S, Savardashtaki A Heliyon. 2024; 10(22):e40265.

PMID: 39605829 PMC: 11600032. DOI: 10.1016/j.heliyon.2024.e40265.


Design of Cytotoxic T Cell Epitopes by Machine Learning of Human Degrons.

Truex N, Mohapatra S, Melo M, Rodriguez J, Li N, Abraham W ACS Cent Sci. 2024; 10(4):793-802.

PMID: 38680558 PMC: 11046456. DOI: 10.1021/acscentsci.3c01544.


A robust data analytical method to investigate sequence dependence in flow-based peptide synthesis.

Tamas B, Willi P, Burgisser H, Hartrampf N React Chem Eng. 2024; 9(4):825-832.

PMID: 38549785 PMC: 10966953. DOI: 10.1039/d3re00494e.


References
1.
Coley C, Green W, Jensen K . Machine Learning in Computer-Aided Synthesis Planning. Acc Chem Res. 2018; 51(5):1281-1289. DOI: 10.1021/acs.accounts.8b00087. View

2.
Wolfe J, Fadzen C, Choo Z, Holden R, Yao M, Hanson G . Machine Learning To Predict Cell-Penetrating Peptides for Antisense Delivery. ACS Cent Sci. 2018; 4(4):512-520. PMC: 5920612. DOI: 10.1021/acscentsci.8b00098. View

3.
Mijalis A, Thomas 3rd D, Simon M, Adamo A, Beaumont R, Jensen K . A fully automated flow-based approach for accelerated peptide synthesis. Nat Chem Biol. 2017; 13(5):464-466. DOI: 10.1038/nchembio.2318. View

4.
Hase F, Roch L, Kreisbeck C, Aspuru-Guzik A . Phoenics: A Bayesian Optimizer for Chemistry. ACS Cent Sci. 2018; 4(9):1134-1145. PMC: 6161047. DOI: 10.1021/acscentsci.8b00307. View

5.
Gao H, Struble T, Coley C, Wang Y, Green W, Jensen K . Using Machine Learning To Predict Suitable Conditions for Organic Reactions. ACS Cent Sci. 2018; 4(11):1465-1476. PMC: 6276053. DOI: 10.1021/acscentsci.8b00357. View