» Articles » PMID: 27629638

The Coming of Age of De Novo Protein Design

Overview
Journal Nature
Specialty Science
Date 2016 Sep 16
PMID 27629638
Citations 469
Authors
Affiliations
Soon will be listed here.
Abstract

There are 20(200) possible amino-acid sequences for a 200-residue protein, of which the natural evolutionary process has sampled only an infinitesimal subset. De novo protein design explores the full sequence space, guided by the physical principles that underlie protein folding. Computational methodology has advanced to the point that a wide range of structures can be designed from scratch with atomic-level accuracy. Almost all protein engineering so far has involved the modification of naturally occurring proteins; it should now be possible to design new functional proteins from the ground up to tackle current challenges in biomedicine and nanotechnology.

Citing Articles

Scalable acoustic virtual stirrer for enhanced interfacial enzymatic nucleic acid reactions.

Li D, Li K, Li J, Li D, Chen H, Li S Sci Adv. 2025; 11(10):eadt6955.

PMID: 40043123 PMC: 11881892. DOI: 10.1126/sciadv.adt6955.


Exploiting the Specificity of CRISPR/Cas System for Nucleic Acids Amplification-Free Disease Diagnostics in the Point-of-Care.

Yee B, Ali N, Mohd-Naim N, Ahmed M Chem Bio Eng. 2025; 1(4):330-339.

PMID: 39974464 PMC: 11835143. DOI: 10.1021/cbe.3c00112.


Integrating protein language models and automatic biofoundry for enhanced protein evolution.

Zhang Q, Chen W, Qin M, Wang Y, Pu Z, Ding K Nat Commun. 2025; 16(1):1553.

PMID: 39934638 PMC: 11814318. DOI: 10.1038/s41467-025-56751-8.


Large-scale energy decomposition for the analysis of protein stability.

Mansoor S, Frasnetti E, Cucchi I, Magni A, Bonollo G, Serapian S Cell Stress Chaperones. 2025; 30(1):57-68.

PMID: 39884551 PMC: 11847297. DOI: 10.1016/j.cstres.2025.01.001.


Confinement and Catalysis within Designed Peptide Barrels.

Petrenas R, Hawkins O, Jones J, Scott D, Fletcher J, Obst U J Am Chem Soc. 2025; 147(4):3796-3803.

PMID: 39813445 PMC: 11783595. DOI: 10.1021/jacs.4c16633.


References
1.
Brunette T, Parmeggiani F, Huang P, Bhabha G, Ekiert D, Tsutakawa S . Exploring the repeat protein universe through computational protein design. Nature. 2015; 528(7583):580-4. PMC: 4845728. DOI: 10.1038/nature16162. View

2.
Ponder J, Richards F . Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987; 193(4):775-91. DOI: 10.1016/0022-2836(87)90358-5. View

3.
Wood C, Bruning M, Ibarra A, Bartlett G, Thomson A, Sessions R . CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics. 2014; 30(21):3029-35. PMC: 4201159. DOI: 10.1093/bioinformatics/btu502. View

4.
Balakrishnan S, Kamisetty H, Carbonell J, Lee S, Langmead C . Learning generative models for protein fold families. Proteins. 2011; 79(4):1061-78. DOI: 10.1002/prot.22934. View

5.
Tinberg C, Khare S, Dou J, Doyle L, Nelson J, Schena A . Computational design of ligand-binding proteins with high affinity and selectivity. Nature. 2013; 501(7466):212-216. PMC: 3898436. DOI: 10.1038/nature12443. View