» Articles » PMID: 33275650

Rapid Single-molecule Digital Detection of Protein Biomarkers for Continuous Monitoring of Systemic Immune Disorders

Abstract

Digital protein assays have great potential to advance immunodiagnostics because of their single-molecule sensitivity, high precision, and robust measurements. However, translating digital protein assays to acute clinical care has been challenging because it requires deployment of these assays with a rapid turnaround. Herein, we present a technology platform for ultrafast digital protein biomarker detection by using single-molecule counting of immune-complex formation events at an early, pre-equilibrium state. This method, which we term "pre-equilibrium digital enzyme-linked immunosorbent assay" (PEdELISA), can quantify a multiplexed panel of protein biomarkers in 10 µL of serum within an unprecedented assay incubation time of 15 to 300 seconds over a 104 dynamic range. PEdELISA allowed us to perform rapid monitoring of protein biomarkers in patients manifesting post-chimeric antigen receptor T-cell therapy cytokine release syndrome, with ∼30-minute sample-to-answer time and a sub-picograms per mL limit of detection. The rapid, sensitive, and low-input volume biomarker quantification enabled by PEdELISA is broadly applicable to timely monitoring of acute disease, potentially enabling more personalized treatment.

Citing Articles

Clinical Peptidomics: Advances in Instrumentation, Analyses, and Applications.

Li L, Wu J, Lyon C, Jiang L, Hu T BME Front. 2023; 4:0019.

PMID: 37849662 PMC: 10521655. DOI: 10.34133/bmef.0019.


Amyloid-β: A potential mediator of aging-related vascular pathologies.

Khan F, Qiu H Vascul Pharmacol. 2023; 152:107213.

PMID: 37625763 PMC: 11793904. DOI: 10.1016/j.vph.2023.107213.


Miniaturized microarray-format digital ELISA enabled by lithographic protein patterning.

Stephens A, Song Y, McClellan B, Su S, Xu S, Chen K Biosens Bioelectron. 2023; 237:115536.

PMID: 37473549 PMC: 10528924. DOI: 10.1016/j.bios.2023.115536.


A digital nanoplasmonic microarray immunosensor for multiplexed cytokine monitoring during CAR T-cell therapy from a leukemia tumor microenvironment model.

Ma B, Liu X, Zhang Z, Ma C, Chand R, Patwardhan S Biosens Bioelectron. 2023; 230:115247.

PMID: 37023552 PMC: 10103176. DOI: 10.1016/j.bios.2023.115247.


A tissue chip with integrated digital immunosensors: In situ brain endothelial barrier cytokine secretion monitoring.

Su S, Song Y, Stephens A, Situ M, McCloskey M, McGrath J Biosens Bioelectron. 2023; 224():115030.

PMID: 36603283 PMC: 10401069. DOI: 10.1016/j.bios.2022.115030.


References
1.
Duan X, Li Y, Rajan N, Routenberg D, Modis Y, Reed M . Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat Nanotechnol. 2012; 7(6):401-7. PMC: 4180882. DOI: 10.1038/nnano.2012.82. View

2.
Griffin G, Shenoi S, Hughes G . Hemophagocytic lymphohistiocytosis: An update on pathogenesis, diagnosis, and therapy. Best Pract Res Clin Rheumatol. 2020; 34(4):101515. DOI: 10.1016/j.berh.2020.101515. View

3.
Hoiland R, Stukas S, Cooper J, Thiara S, Chen L, Biggs C . Amelioration of COVID-19-related cytokine storm syndrome: parallels to chimeric antigen receptor-T cell cytokine release syndrome. Br J Haematol. 2020; 190(3):e150-e154. PMC: 7361645. DOI: 10.1111/bjh.16961. View

4.
Tan X, Khaing Oo M, Gong Y, Li Y, Zhu H, Fan X . Glass capillary based microfluidic ELISA for rapid diagnostics. Analyst. 2017; 142(13):2378-2385. DOI: 10.1039/c7an00523g. View

5.
McRae M, Simmons G, Wong J, T McDevitt J . Programmable Bio-nanochip Platform: A Point-of-Care Biosensor System with the Capacity To Learn. Acc Chem Res. 2016; 49(7):1359-68. PMC: 6504240. DOI: 10.1021/acs.accounts.6b00112. View