» Articles » PMID: 22635097

Quantification of the Affinities and Kinetics of Protein Interactions Using Silicon Nanowire Biosensors

Overview
Journal Nat Nanotechnol
Specialty Biotechnology
Date 2012 May 29
PMID 22635097
Citations 72
Authors
Affiliations
Soon will be listed here.
Abstract

Monitoring the binding affinities and kinetics of protein interactions is important in clinical diagnostics and drug development because such information is used to identify new therapeutic candidates. Surface plasmon resonance is at present the standard method used for such analysis, but this is limited by low sensitivity and low-throughput analysis. Here, we show that silicon nanowire field-effect transistors can be used as biosensors to measure protein-ligand binding affinities and kinetics with sensitivities down to femtomolar concentrations. Based on this sensing mechanism, we develop an analytical model to calibrate the sensor response and quantify the molecular binding affinities of two representative protein-ligand binding pairs. The rate constant of the association and dissociation of the protein-ligand pair is determined by monitoring the reaction kinetics, demonstrating that silicon nanowire field-effect transistors can be readily used as high-throughput biosensors to quantify protein interactions.

Citing Articles

Variable gain DNA nanostructure charge amplifiers for biosensing.

Majikes J, Cho S, Cleveland 4th T, Liddle J, Balijepalli A Nanoscale. 2024; 16(45):20893-20902.

PMID: 39403767 PMC: 11883816. DOI: 10.1039/d4nr02959c.


Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers.

Wiest A, Kielkowski P Beilstein J Org Chem. 2024; 20:2323-2341.

PMID: 39290210 PMC: 11406061. DOI: 10.3762/bjoc.20.199.


Smart Biointerfaces via Click Chemistry-Enabled Nanopatterning of Multiple Bioligands and DNA Force Sensors.

Shahrokhtash A, Sutherland D ACS Appl Mater Interfaces. 2024; 16(17):21534-21545.

PMID: 38634566 PMC: 11073048. DOI: 10.1021/acsami.4c00831.


Kinetic study of membrane protein interactions: from three to two dimensions.

Adrien V, Reffay M, Taulier N, Verchere A, Monlezun L, Picard M Sci Rep. 2024; 14(1):882.

PMID: 38195620 PMC: 10776792. DOI: 10.1038/s41598-023-50827-5.


Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring.

Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y Exploration (Beijing). 2023; 3(3):20210027.

PMID: 37933385 PMC: 10624392. DOI: 10.1002/EXP.20210027.


References
1.
DOrazio P . Biosensors in clinical chemistry. Clin Chim Acta. 2003; 334(1-2):41-69. DOI: 10.1016/s0009-8981(03)00241-9. View

2.
Ivanov S, Dragoi A, Wang X, Dallacosta C, Louten J, Musco G . A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 2007; 110(6):1970-81. PMC: 1976374. DOI: 10.1182/blood-2006-09-044776. View

3.
Li Y, Berke I, Modis Y . DNA binding to proteolytically activated TLR9 is sequence-independent and enhanced by DNA curvature. EMBO J. 2012; 31(4):919-31. PMC: 3280545. DOI: 10.1038/emboj.2011.441. View

4.
Tang Y, Mernaugh R, Zeng X . Nonregeneration protocol for surface plasmon resonance: study of high-affinity interaction with high-density biosensors. Anal Chem. 2006; 78(6):1841-8. PMC: 2504753. DOI: 10.1021/ac051868g. View

5.
Gaster R, Xu L, Han S, Wilson R, Hall D, Osterfeld S . Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat Nanotechnol. 2011; 6(5):314-20. PMC: 3089684. DOI: 10.1038/nnano.2011.45. View