» Articles » PMID: 33217319

Structural Basis for Virulence Activation of Francisella Tularensis

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2020 Nov 20
PMID 33217319
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The bacterium Francisella tularensis (Ft) is one of the most infectious agents known. Ft virulence is controlled by a unique combination of transcription regulators: the MglA-SspA heterodimer, PigR, and the stress signal, ppGpp. MglA-SspA assembles with the σ-associated RNAP holoenzyme (RNAPσ), forming a virulence-specialized polymerase. These factors activate Francisella pathogenicity island (FPI) gene expression, which is required for virulence, but the mechanism is unknown. Here we report FtRNAPσ-promoter-DNA, FtRNAPσ-(MglA-SspA)-promoter DNA, and FtRNAPσ-(MglA-SspA)-ppGpp-PigR-promoter DNA cryo-EM structures. Structural and genetic analyses show MglA-SspA facilitates σ binding to DNA to regulate virulence and virulence-enhancing genes. Our Escherichia coli RNAPσhomodimeric EcSspA structure suggests this is a general SspA-transcription regulation mechanism. Strikingly, our FtRNAPσ-(MglA-SspA)-ppGpp-PigR-DNA structure reveals ppGpp binding to MglA-SspA tethers PigR to promoters. PigR in turn recruits FtRNAP αCTDs to DNA UP elements. Thus, these studies unveil a unique mechanism for Ft pathogenesis involving a virulence-specialized RNAP that employs two (MglA-SspA)-based strategies to activate virulence genes.

Citing Articles

universal stress protein contributes to persistence during growth arrest and paraquat-induced superoxide stress.

Girardo B, Yue Y, Lockridge O, Bartling A, Schopfer L, Augusto L J Bacteriol. 2025; 207(2):e0037724.

PMID: 39846732 PMC: 11841066. DOI: 10.1128/jb.00377-24.


Breaking the cellular defense: the role of autophagy evasion in virulence.

Pavlik P, Velecka E, Spidlova P Front Cell Infect Microbiol. 2025; 14():1523597.

PMID: 39776438 PMC: 11703736. DOI: 10.3389/fcimb.2024.1523597.


SspA is a transcriptional regulator of CRISPR adaptation in E. coli.

Lopez S, Lee Y, Zhang K, Shipman S Nucleic Acids Res. 2024; 53(4).

PMID: 39727179 PMC: 11879090. DOI: 10.1093/nar/gkae1244.


Evidence for a compact σ conformation and .

Joron K, Zamel J, Kalisman N, Lerner E iScience. 2024; 27(6):110140.

PMID: 38957792 PMC: 11217687. DOI: 10.1016/j.isci.2024.110140.


The DNA damage response of , revisited: Differential gene expression after replication inhibition.

Sass T, Lovett S Proc Natl Acad Sci U S A. 2024; 121(27):e2407832121.

PMID: 38935560 PMC: 11228462. DOI: 10.1073/pnas.2407832121.


References
1.
Larsson P, Oyston P, Chain P, Chu M, Duffield M, Fuxelius H . The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet. 2005; 37(2):153-9. DOI: 10.1038/ng1499. View

2.
Maurin M . Francisella tularensis as a potential agent of bioterrorism?. Expert Rev Anti Infect Ther. 2014; 13(2):141-4. DOI: 10.1586/14787210.2015.986463. View

3.
Ishihama A, Saitoh T . Subunits of RNA polymerase in function and structure. IX. Regulation of RNA polymerase activity by stringent starvation protein (SSP). J Mol Biol. 1979; 129(4):517-30. DOI: 10.1016/0022-2836(79)90466-2. View

4.
Nano F, Zhang N, Cowley S, Klose K, Cheung K, Roberts M . A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol. 2004; 186(19):6430-6. PMC: 516616. DOI: 10.1128/JB.186.19.6430-6436.2004. View

5.
Newlands J, Ross W, Gosink K, Gourse R . Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. J Mol Biol. 1991; 220(3):569-83. DOI: 10.1016/0022-2836(91)90101-b. View