Down-regulation of Beclin1 Promotes Direct Cardiac Reprogramming
Overview
Science
Authors
Affiliations
Direct reprogramming of fibroblasts to alternative cell fates by forced expression of transcription factors offers a platform to explore fundamental molecular events governing cell fate identity. The discovery and study of induced cardiomyocytes (iCMs) not only provides alternative therapeutic strategies for heart disease but also sheds lights on basic biology underlying CM fate determination. The iCM field has primarily focused on early transcriptome and epigenome repatterning, whereas little is known about how reprogramming iCMs remodel, erase, and exit the initial fibroblast lineage to acquire final cell identity. Here, we show that autophagy-related 5 (Atg5)-dependent autophagy, an evolutionarily conserved self-digestion process, was induced and required for iCM reprogramming. Unexpectedly, the autophagic factor Beclin1 (Becn1) was found to suppress iCM induction in an autophagy-independent manner. Depletion of resulted in improved iCM induction from both murine and human fibroblasts. In a mouse genetic model, haploinsufficiency further enhanced reprogramming factor-mediated heart function recovery and scar size reduction after myocardial infarction. Mechanistically, loss of up-regulated and down-regulated Wnt inhibitors, leading to activation of the canonical Wnt/β-catenin signaling pathway. In addition, Becn1 physically interacts with other classical class III phosphatidylinositol 3-kinase (PI3K III) complex components, the knockdown of which phenocopied depletion in cardiac reprogramming. Collectively, our study revealed an inductive role of Atg5-dependent autophagy as well as a previously unrecognized autophagy-independent inhibitory function of Becn1 in iCM reprogramming.
Decoding the epigenetic and transcriptional basis of direct cardiac reprogramming.
Peng W, Getachew A, Zhou Y Stem Cells. 2025; 43(3).
PMID: 39851272 PMC: 11904897. DOI: 10.1093/stmcls/sxaf002.
Control of cell fate upon transcription factor-driven cardiac reprogramming.
Shi H, Spurlock B, Liu J, Qian L Curr Opin Genet Dev. 2024; 89:102226.
PMID: 39586652 PMC: 11894758. DOI: 10.1016/j.gde.2024.102226.
Santos F, Correia M, Dias R, Bola B, Noberini R, Ferreira R Aging Cell. 2024; 24(2):e14371.
PMID: 39540462 PMC: 11822649. DOI: 10.1111/acel.14371.
Hu X, Sun J, Wan M, Zhang B, Wang L, Zhong T Cell Regen. 2024; 13(1):19.
PMID: 39347883 PMC: 11442758. DOI: 10.1186/s13619-024-00202-0.
Xie Y, Wang Q, Yang Y, Near D, Wang H, Colon M Nat Cardiovasc Res. 2024; 2(11):1060-1077.
PMID: 38524149 PMC: 10959502. DOI: 10.1038/s44161-023-00344-5.