» Articles » PMID: 32738205

Mitochondrial Oxidative Damage Underlies Regulatory T Cell Defects in Autoimmunity

Abstract

Regulatory T cells (Tregs) are vital for the maintenance of immune homeostasis, while their dysfunction constitutes a cardinal feature of autoimmunity. Under steady-state conditions, mitochondrial metabolism is critical for Treg function; however, the metabolic adaptations of Tregs during autoimmunity are ill-defined. Herein, we report that elevated mitochondrial oxidative stress and a robust DNA damage response (DDR) associated with cell death occur in Tregs in individuals with autoimmunity. In an experimental autoimmune encephalitis (EAE) mouse model of autoimmunity, we found a Treg dysfunction recapitulating the features of autoimmune Tregs with a prominent mtROS signature. Scavenging of mtROS in Tregs of EAE mice reversed the DDR and prevented Treg death, while attenuating the Th1 and Th17 autoimmune responses. These findings highlight an unrecognized role of mitochondrial oxidative stress in defining Treg fate during autoimmunity, which may facilitate the design of novel immunotherapies for diseases with disturbed immune tolerance.

Citing Articles

The Interaction Among Effector, Regulatory, and Tγδ Cells Determines the Development of Allergy or Tolerance to Chromium.

Zemelka-Wiacek M J Clin Med. 2025; 14(4).

PMID: 40004900 PMC: 11856200. DOI: 10.3390/jcm14041370.


Immunometabolism of Tregs: mechanisms, adaptability, and therapeutic implications in diseases.

Lu Y, Wang Y, Ruan T, Wang Y, Ju L, Zhou M Front Immunol. 2025; 16:1536020.

PMID: 39917294 PMC: 11798928. DOI: 10.3389/fimmu.2025.1536020.


Decrease of NAD Inhibits the Apoptosis of OLP T Cells via Inducing Mitochondrial Fission.

Zhang Z, Wang F, Zhou G J Inflamm Res. 2025; 18:1091-1106.

PMID: 39871961 PMC: 11771177. DOI: 10.2147/JIR.S502273.


Lack of phosphatidylinositol 3-kinase VPS34 in regulatory T cells leads to a fatal lymphoproliferative disorder without affecting their development.

Courreges C, Davenport E, Bilanges B, Rebollo-Gomez E, Hukelmann J, Schoenfelder P Front Immunol. 2024; 15:1374621.

PMID: 39664390 PMC: 11631860. DOI: 10.3389/fimmu.2024.1374621.


Altered metabolic profiles of dermatomyositis with different myositis-specific autoantibodies associated with clinical phenotype.

Wang N, Shang L, Liang Z, Feng M, Wang Y, Gao C Front Immunol. 2024; 15:1429010.

PMID: 39654882 PMC: 11625817. DOI: 10.3389/fimmu.2024.1429010.


References
1.
Thompson A, Banwell B, Barkhof F, Carroll W, Coetzee T, Comi G . Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2017; 17(2):162-173. DOI: 10.1016/S1474-4422(17)30470-2. View

2.
Sena L, Chandel N . Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012; 48(2):158-67. PMC: 3484374. DOI: 10.1016/j.molcel.2012.09.025. View

3.
Dominguez-Villar M, Hafler D . Regulatory T cells in autoimmune disease. Nat Immunol. 2018; 19(7):665-673. PMC: 7882196. DOI: 10.1038/s41590-018-0120-4. View

4.
Dobin A, Davis C, Schlesinger F, Drenkow J, Zaleski C, Jha S . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012; 29(1):15-21. PMC: 3530905. DOI: 10.1093/bioinformatics/bts635. View

5.
Viglietta V, Baecher-Allan C, Weiner H, Hafler D . Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004; 199(7):971-9. PMC: 2211881. DOI: 10.1084/jem.20031579. View