» Articles » PMID: 32581361

Pervasive Lesion Segregation Shapes Cancer Genome Evolution

Abstract

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.

Citing Articles

Deaminase-Driven Reverse Transcription Mutagenesis in Oncogenesis: Critical Analysis of Transcriptional Strand Asymmetries of Single Base Substitution Signatures.

Steele E, Lindley R Int J Mol Sci. 2025; 26(3).

PMID: 39940758 PMC: 11817618. DOI: 10.3390/ijms26030989.


Mitotic chromatin marking governs the segregation of DNA damage.

Ferrand J, Dabin J, Chevallier O, Kane-Charvin M, Kupai A, Hrit J Nat Commun. 2025; 16(1):746.

PMID: 39820273 PMC: 11739639. DOI: 10.1038/s41467-025-56090-8.


Prolonged persistence of mutagenic DNA lesions in somatic cells.

Spencer Chapman M, Mitchell E, Yoshida K, Williams N, Fabre M, Ranzoni A Nature. 2025; 638(8051):729-738.

PMID: 39814886 PMC: 11839459. DOI: 10.1038/s41586-024-08423-8.


DNA strands show symmetry in damage tolerance but asymmetries in repair efficiency.

Nature. 2024; .

PMID: 39112578 DOI: 10.1038/d41586-024-02561-9.


Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome.

Yao Y, Miodownik I, OHagan M, Jbara M, Afek A Transcription. 2024; 15(3-5):114-138.

PMID: 39033307 PMC: 11810102. DOI: 10.1080/21541264.2024.2379161.


References
1.
Forrest A, Kawaji H, Rehli M, Baillie J, de Hoon M, Haberle V . A promoter-level mammalian expression atlas. Nature. 2014; 507(7493):462-70. PMC: 4529748. DOI: 10.1038/nature13182. View

2.
Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-60. PMC: 2705234. DOI: 10.1093/bioinformatics/btp324. View

3.
Huang M, Yu W, Teoh W, Ardin M, Jusakul A, Ng A . Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 2017; 27(9):1475-1486. PMC: 5580708. DOI: 10.1101/gr.220038.116. View

4.
Cunningham F, Achuthan P, Akanni W, Allen J, Amode M, Armean I . Ensembl 2019. Nucleic Acids Res. 2018; 47(D1):D745-D751. PMC: 6323964. DOI: 10.1093/nar/gky1113. View

5.
Perry P, Evans H . Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature. 1975; 258(5531):121-5. DOI: 10.1038/258121a0. View