» Articles » PMID: 32497496

High-Resolution In Vivo Identification of MiRNA Targets by Halo-Enhanced Ago2 Pull-Down

Abstract

The identification of microRNA (miRNA) targets by Ago2 crosslinking-immunoprecipitation (CLIP) methods has provided major insights into the biology of this important class of non-coding RNAs. However, these methods are technically challenging and not easily applicable to an in vivo setting. To overcome these limitations and facilitate the investigation of miRNA functions in vivo, we have developed a method based on a genetically engineered mouse harboring a conditional Halo-Ago2 allele expressed from the endogenous Ago2 locus. By using a resin conjugated to the HaloTag ligand, Ago2-miRNA-mRNA complexes can be purified from cells and tissues expressing the endogenous Halo-Ago2 allele. We demonstrate the reproducibility and sensitivity of this method in mouse embryonic stem cells, developing embryos, adult tissues, and autochthonous mouse models of human brain and lung cancers. This method and the datasets we have generated will facilitate the characterization of miRNA-mRNA networks in vivo under physiological and pathological conditions.

Citing Articles

A Simplified Guide RNA Synthesis Protocol for SNAP- and Halo-Tag-Based RNA Editing Tools.

Hofacker D, Kalkuhl S, Schmid J, Singh S, Stafforst T Molecules. 2025; 30(5).

PMID: 40076283 PMC: 11901542. DOI: 10.3390/molecules30051049.


Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference.

Lobo V, Nowak I, Fernandez C, Correa Muler A, Westholm J, Huang H Nucleic Acids Res. 2024; 52(16):9917-9935.

PMID: 38994560 PMC: 11381323. DOI: 10.1093/nar/gkae589.


Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo.

Guo J, Blanco M, Walkup 4th W, Bonesteele G, Urbinati C, Banerjee A Mol Cell. 2024; 84(7):1271-1289.e12.

PMID: 38387462 PMC: 10997485. DOI: 10.1016/j.molcel.2024.01.026.


To kill a microRNA: emerging concepts in target-directed microRNA degradation.

Buhagiar A, Kleaveland B Nucleic Acids Res. 2024; 52(4):1558-1574.

PMID: 38224449 PMC: 10899785. DOI: 10.1093/nar/gkae003.


The miRNA-target interactions: An underestimated intricacy.

Diener C, Keller A, Meese E Nucleic Acids Res. 2023; 52(4):1544-1557.

PMID: 38033323 PMC: 10899768. DOI: 10.1093/nar/gkad1142.


References
1.
Kim D, Paggi J, Park C, Bennett C, Salzberg S . Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; 37(8):907-915. PMC: 7605509. DOI: 10.1038/s41587-019-0201-4. View

2.
Ventura A, Young A, Winslow M, Lintault L, Meissner A, Erkeland S . Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008; 132(5):875-86. PMC: 2323338. DOI: 10.1016/j.cell.2008.02.019. View

3.
McAlister G, Nusinow D, Jedrychowski M, Wuhr M, Huttlin E, Erickson B . MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem. 2014; 86(14):7150-8. PMC: 4215866. DOI: 10.1021/ac502040v. View

4.
Bosson A, Zamudio J, Sharp P . Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell. 2014; 56(3):347-359. PMC: 5048918. DOI: 10.1016/j.molcel.2014.09.018. View

5.
Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S . Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004; 64(9):3087-95. DOI: 10.1158/0008-5472.can-03-3773. View