» Articles » PMID: 32398033

Modeling Neuronal Consequences of Autism-associated Gene Regulatory Variants with Human Induced Pluripotent Stem Cells

Overview
Journal Mol Autism
Publisher Biomed Central
Date 2020 May 14
PMID 32398033
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic factors contribute to the development of autism spectrum disorder (ASD), and although non-protein-coding regions of the genome are being increasingly implicated in ASD, the functional consequences of these variants remain largely uncharacterized. Induced pluripotent stem cells (iPSCs) enable the production of personalized neurons that are genetically matched to people with ASD and can therefore be used to directly test the effects of genomic variation on neuronal gene expression, synapse function, and connectivity. The combined use of human pluripotent stem cells with genome editing to introduce or correct specific variants has proved to be a powerful approach for exploring the functional consequences of ASD-associated variants in protein-coding genes and, more recently, long non-coding RNAs (lncRNAs). Here, we review recent studies that implicate lncRNAs, other non-coding mutations, and regulatory variants in ASD susceptibility. We also discuss experimental design considerations for using iPSCs and genome editing to study the role of the non-protein-coding genome in ASD.

Citing Articles

Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human Model of Neurotrauma.

Mitevska A, Santacruz C, Martin E, Jones I, Ghiacy A, Dixon S Neurotrauma Rep. 2023; 4(1):682-692.

PMID: 37908320 PMC: 10615064. DOI: 10.1089/neur.2023.0060.


The role of prickle proteins in vertebrate development and pathology.

Radaszkiewicz K, Sulcova M, Kohoutkova E, Harnos J Mol Cell Biochem. 2023; 479(5):1199-1221.

PMID: 37358815 PMC: 11116189. DOI: 10.1007/s11010-023-04787-z.


Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells.

Zhang W, Ross P, Ellis J, Salter M Transl Psychiatry. 2022; 12(1):243.

PMID: 35680847 PMC: 9184461. DOI: 10.1038/s41398-022-02010-z.


Functional genomics and the future of iPSCs in disease modeling.

Brooks I, Garrone C, Kerins C, Kiar C, Syntaka S, Xu J Stem Cell Reports. 2022; 17(5):1033-1047.

PMID: 35487213 PMC: 9133703. DOI: 10.1016/j.stemcr.2022.03.019.


Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish.

Pensado-Lopez A, Veiga-Rua S, Carracedo A, Allegue C, Sanchez L Genes (Basel). 2020; 11(11).

PMID: 33233737 PMC: 7699923. DOI: 10.3390/genes11111376.

References
1.
Ruzzo E, Perez-Cano L, Jung J, Wang L, Kashef-Haghighi D, Hartl C . Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell. 2019; 178(4):850-866.e26. PMC: 7102900. DOI: 10.1016/j.cell.2019.07.015. View

2.
Frega M, Linda K, Keller J, Gumus-Akay G, Mossink B, van Rhijn J . Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat Commun. 2019; 10(1):4928. PMC: 6821803. DOI: 10.1038/s41467-019-12947-3. View

3.
Brandler W, Antaki D, Gujral M, Kleiber M, Whitney J, Maile M . Paternally inherited cis-regulatory structural variants are associated with autism. Science. 2018; 360(6386):327-331. PMC: 6449150. DOI: 10.1126/science.aan2261. View

4.
An J, Lin K, Zhu L, Werling D, Dong S, Brand H . Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science. 2018; 362(6420). PMC: 6432922. DOI: 10.1126/science.aat6576. View

5.
Forrest A, Kawaji H, Rehli M, Baillie J, de Hoon M, Haberle V . A promoter-level mammalian expression atlas. Nature. 2014; 507(7493):462-70. PMC: 4529748. DOI: 10.1038/nature13182. View