» Articles » PMID: 35487213

Functional Genomics and the Future of IPSCs in Disease Modeling

Overview
Publisher Cell Press
Specialty Cell Biology
Date 2022 Apr 29
PMID 35487213
Authors
Affiliations
Soon will be listed here.
Abstract

Induced pluripotent stem cells (iPSCs) are valuable in disease modeling because of their potential to expand and differentiate into virtually any cell type and recapitulate key aspects of human biology. Functional genomics are genome-wide studies that aim to discover genotype-phenotype relationships, thereby revealing the impact of human genetic diversity on normal and pathophysiology. In this review, we make the case that human iPSCs (hiPSCs) are a powerful tool for functional genomics, since they provide an in vitro platform for the study of population genetics. We describe cutting-edge tools and strategies now available to researchers, including multi-omics technologies, advances in hiPSC culture techniques, and innovations in drug development. Functional genomics approaches based on hiPSCs hold great promise for advancing drug discovery, disease etiology, and the impact of genetic variation on human biology.

Citing Articles

Atlas of multilineage stem cell differentiation reveals TMEM88 as a developmental regulator of blood pressure.

Shen S, Werner T, Lukowski S, Andersen S, Sun Y, Shim W Nat Commun. 2025; 16(1):1356.

PMID: 39904980 PMC: 11794859. DOI: 10.1038/s41467-025-56533-2.


Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders.

Yang Z, Teaney N, Buttermore E, Sahin M, Afshar-Saber W Front Neurosci. 2025; 18:1524577.

PMID: 39844857 PMC: 11750789. DOI: 10.3389/fnins.2024.1524577.


BRAFV600E induces key features of LCH in iPSCs with cell type-specific phenotypes and drug responses.

Abagnale G, Schwentner R, Ben Soussia-Weiss P, van Midden W, Sturtzel C, Potschger U Blood. 2024; 145(8):850-865.

PMID: 39630039 PMC: 11867135. DOI: 10.1182/blood.2024026066.


Revolutionizing medicine: recent developments and future prospects in stem-cell therapy.

Hussen B, Hussen B, Taheri M, Yashooa R, Abdullah G, Abdullah S Int J Surg. 2024; 110(12):8002-8024.

PMID: 39497543 PMC: 11634165. DOI: 10.1097/JS9.0000000000002109.


An in-depth review of the function of RNA-binding protein FXR1 in neurodevelopment.

Mendez-Albelo N, Sandoval S, Xu Z, Zhao X Cell Tissue Res. 2024; 398(2):63-77.

PMID: 39155323 DOI: 10.1007/s00441-024-03912-8.


References
1.
Ho R, Workman M, Mathkar P, Wu K, Kim K, ORourke J . Cross-Comparison of Human iPSC Motor Neuron Models of Familial and Sporadic ALS Reveals Early and Convergent Transcriptomic Disease Signatures. Cell Syst. 2020; 12(2):159-175.e9. PMC: 7897311. DOI: 10.1016/j.cels.2020.10.010. View

2.
Lee G, Papapetrou E, Kim H, Chambers S, Tomishima M, Fasano C . Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 2009; 461(7262):402-6. PMC: 2784695. DOI: 10.1038/nature08320. View

3.
Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z . Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods. 2021; 18(5):499-506. DOI: 10.1038/s41592-021-01124-4. View

4.
Zhao D, Badur M, Luebeck J, Magana J, Birmingham A, Sasik R . Combinatorial CRISPR-Cas9 Metabolic Screens Reveal Critical Redox Control Points Dependent on the KEAP1-NRF2 Regulatory Axis. Mol Cell. 2018; 69(4):699-708.e7. PMC: 5819357. DOI: 10.1016/j.molcel.2018.01.017. View

5.
Visscher P, Brown M, McCarthy M, Yang J . Five years of GWAS discovery. Am J Hum Genet. 2012; 90(1):7-24. PMC: 3257326. DOI: 10.1016/j.ajhg.2011.11.029. View