» Articles » PMID: 32387331

A Survey of Transcripts Generated by Spinal Muscular Atrophy Genes

Overview
Publisher Elsevier
Date 2020 May 11
PMID 32387331
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Human Survival Motor Neuron (SMN) genes code for SMN, an essential multifunctional protein. Complete loss of SMN is embryonic lethal, while low levels of SMN lead to spinal muscular atrophy (SMA), a major genetic disease of children and infants. Reduced levels of SMN are associated with the abnormal development of heart, lung, muscle, gastro-intestinal system and testis. The SMN loci have been shown to generate a vast repertoire of transcripts, including linear, back- and trans-spliced RNAs as well as antisense long noncoding RNAs. However, functions of the majority of these transcripts remain unknown. Here we review the nature of RNAs generated from the SMN loci and discuss their potential functions in cellular metabolism.

Citing Articles

Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes.

Luo D, Ottesen E, Lee J, Singh R Sci Rep. 2024; 14(1):10442.

PMID: 38714739 PMC: 11076517. DOI: 10.1038/s41598-024-60593-7.


Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes.

Luo D, Ottesen E, Lee J, Singh R Res Sq. 2024; .

PMID: 38464174 PMC: 10925445. DOI: 10.21203/rs.3.rs-3818622/v1.


A super minigene with a short promoter and truncated introns recapitulates essential features of transcription and splicing regulation of the SMN1 and SMN2 genes.

Ottesen E, Seo J, Luo D, Singh N, Singh R Nucleic Acids Res. 2024; 52(7):3547-3571.

PMID: 38214229 PMC: 11040157. DOI: 10.1093/nar/gkad1259.


Internal Introns Promote Backsplicing to Generate Circular RNAs from Spinal Muscular Atrophy Gene.

Luo D, Singh N, Singh R Genes (Basel). 2022; 13(7).

PMID: 35885927 PMC: 9323214. DOI: 10.3390/genes13071145.


Comprehensive In Silico Analysis of Retrotransposon Insertions within the Genes Involved in Spinal Muscular Atrophy.

Pinto A, Cunha C, Chaves R, Butchbach M, Adega F Biology (Basel). 2022; 11(6).

PMID: 35741345 PMC: 9219815. DOI: 10.3390/biology11060824.


References
1.
Porensky P, Mitrpant C, McGovern V, Bevan A, Foust K, Kaspar B . A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet. 2011; 21(7):1625-38. PMC: 3298284. DOI: 10.1093/hmg/ddr600. View

2.
Harding B, Kariya S, Monani U, Chung W, Benton M, Yum S . Spectrum of neuropathophysiology in spinal muscular atrophy type I. J Neuropathol Exp Neurol. 2014; 74(1):15-24. PMC: 4350580. DOI: 10.1097/NEN.0000000000000144. View

3.
Howell M, Singh N, Singh R . Advances in therapeutic development for spinal muscular atrophy. Future Med Chem. 2014; 6(9):1081-99. PMC: 4356243. DOI: 10.4155/fmc.14.63. View

4.
Singh N, Del Rio-Malewski J, Luo D, Ottesen E, Howell M, Singh R . Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res. 2017; 45(21):12214-12240. PMC: 5716214. DOI: 10.1093/nar/gkx824. View

5.
Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A . Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet. 1997; 16(3):265-9. DOI: 10.1038/ng0797-265. View