» Articles » PMID: 32358203

Structural Basis for Inhibition of the RNA-dependent RNA Polymerase from SARS-CoV-2 by Remdesivir

Abstract

The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global crisis. Replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp) enzyme, a target of the antiviral drug remdesivir. Here we report the cryo-electron microscopy structure of the SARS-CoV-2 RdRp, both in the apo form at 2.8-angstrom resolution and in complex with a 50-base template-primer RNA and remdesivir at 2.5-angstrom resolution. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp, where remdesivir is covalently incorporated into the primer strand at the first replicated base pair, and terminates chain elongation. Our structures provide insights into the mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.

Citing Articles

Remdesivir and Obeldesivir Retain Potent Antiviral Activity Against SARS-CoV-2 Omicron Variants.

Rodriguez L, Zamora J, Han D, Moshiri J, Peinovich N, Martinez C Viruses. 2025; 17(2).

PMID: 40006923 PMC: 11860839. DOI: 10.3390/v17020168.


From Origin to the Present: Establishment, Mechanism, Evolutions and Biomedical Applications of the CRISPR/Cas-Based Macromolecular System in Brief.

Yuan Z Molecules. 2025; 30(4).

PMID: 40005257 PMC: 11858448. DOI: 10.3390/molecules30040947.


Redefining activity in SARS-CoV-2 and its regulation by and .

Singh D, Kushwaha T, Kulandaisamy R, Kumar V, Baswal K, Tiwari S Mol Ther Nucleic Acids. 2025; 36(1):102452.

PMID: 39944792 PMC: 11816038. DOI: 10.1016/j.omtn.2025.102452.


Uncovering the hidden RNA virus diversity in Lake Nam Co: Evolutionary insights from an extreme high-altitude environment.

Wu L, Liu Y, Shi W, Chang T, Liu P, Liu K Proc Natl Acad Sci U S A. 2025; 122(6):e2420162122.

PMID: 39903107 PMC: 11831205. DOI: 10.1073/pnas.2420162122.


A comprehensive review of current insights into the virulence factors of SARS-CoV-2.

Wang Y, Xia B, Gao Z J Virol. 2025; 99(2):e0204924.

PMID: 39878471 PMC: 11852741. DOI: 10.1128/jvi.02049-24.


References
1.
Peti W, Johnson M, Herrmann T, Neuman B, Buchmeier M, Nelson M . Structural genomics of the severe acute respiratory syndrome coronavirus: nuclear magnetic resonance structure of the protein nsP7. J Virol. 2005; 79(20):12905-13. PMC: 1235862. DOI: 10.1128/JVI.79.20.12905-12913.2005. View

2.
Ahn D, Choi J, Taylor D, Oh J . Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch Virol. 2012; 157(11):2095-104. PMC: 7086750. DOI: 10.1007/s00705-012-1404-x. View

3.
Zhai Y, Sun F, Li X, Pang H, Xu X, Bartlam M . Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol. 2005; 12(11):980-6. PMC: 7096913. DOI: 10.1038/nsmb999. View

4.
. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5(4):536-544. PMC: 7095448. DOI: 10.1038/s41564-020-0695-z. View

5.
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q . Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020; 367(6485):1444-1448. PMC: 7164635. DOI: 10.1126/science.abb2762. View