» Articles » PMID: 32191640

Sensory Nerves Regulate Mesenchymal Stromal Cell Lineage Commitment by Tuning Sympathetic Tones

Abstract

The sensory nerve was recently identified as being involved in regulation of bone mass accrual. We previously discovered that prostaglandin E2 (PGE2) secreted by osteoblasts could activate sensory nerve EP4 receptor to promote bone formation by inhibiting sympathetic activity. However, the fundamental units of bone formation are active osteoblasts, which originate from mesenchymal stromal/stem cells (MSCs). Here, we found that after sensory denervation, knockout of the EP4 receptor in sensory nerves, or knockout of COX-2 in osteoblasts, could significantly promote adipogenesis and inhibit osteogenesis in adult mice. Furthermore, injection of SW033291 (a small molecule that locally increases the PGE2 level) or propranolol (a beta blocker) significantly promoted osteogenesis and inhibited adipogenesis. This effect of SW033291, but not propranolol, was abolished in conditional EP4-KO mice under normal conditions or in the bone repair process. We conclude that the PGE2/EP4 sensory nerve axis could regulate MSC differentiation in bone marrow of adult mice.

Citing Articles

Targeting skeletal interoception: a novel mechanistic insight into intervertebral disc degeneration and pain management.

Zhu H, Ren J, Wang X, Qin W, Xie Y J Orthop Surg Res. 2025; 20(1):159.

PMID: 39940003 PMC: 11823264. DOI: 10.1186/s13018-025-05577-7.


Osteocyte connexin hemichannels and prostaglandin E release dictate bone marrow mesenchymal stromal cell commitment.

Zhang J, Acosta F, Wang X, Zhao D, Zhang L, Hua R Proc Natl Acad Sci U S A. 2025; 122(7):e2412144122.

PMID: 39937859 PMC: 11848350. DOI: 10.1073/pnas.2412144122.


Viral infections of the central nervous system increase the risk of knee osteoarthritis: a two-sample mendelian randomization study.

Yang M, Su Y, Xu K, Wen P, Xie J, Wan X Aging Clin Exp Res. 2025; 37(1):30.

PMID: 39836329 PMC: 11750930. DOI: 10.1007/s40520-025-02927-7.


Degradation products of magnesium implant synergistically enhance bone regeneration: Unraveling the roles of hydrogen gas and alkaline environment.

An Y, Zhang H, Zhang S, Zhang Y, Zheng L, Chen X Bioact Mater. 2025; 46():331-346.

PMID: 39816475 PMC: 11732853. DOI: 10.1016/j.bioactmat.2024.12.020.


Skeletal interoception and prospective application in biomaterials for bone regeneration.

Bai L, Li J, Li G, Zhou D, Su J, Liu C Bone Res. 2025; 13(1):1.

PMID: 39743568 PMC: 11693760. DOI: 10.1038/s41413-024-00378-w.


References
1.
Worthley D, Churchill M, Compton J, Tailor Y, Rao M, Si Y . Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell. 2015; 160(1-2):269-84. PMC: 4436082. DOI: 10.1016/j.cell.2014.11.042. View

2.
Maryanovich M, Zahalka A, Pierce H, Pinho S, Nakahara F, Asada N . Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med. 2018; 24(6):782-791. PMC: 6095812. DOI: 10.1038/s41591-018-0030-x. View

3.
Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T . Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013; 497(7450):490-3. DOI: 10.1038/nature12115. View

4.
Ambrosi T, Scialdone A, Graja A, Gohlke S, Jank A, Bocian C . Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell. 2017; 20(6):771-784.e6. PMC: 5459794. DOI: 10.1016/j.stem.2017.02.009. View

5.
Chan C, Seo E, Chen J, Lo D, McArdle A, Sinha R . Identification and specification of the mouse skeletal stem cell. Cell. 2015; 160(1-2):285-98. PMC: 4297645. DOI: 10.1016/j.cell.2014.12.002. View