Shahid A, Zahra A, Aslam S, Shamim A, Ali W, Aslam B
Mol Biotechnol. 2025; .
PMID: 39894889
DOI: 10.1007/s12033-025-01374-z.
Chakraborty S, Ray Dutta J, Ganesan R, Minary P
Methods Mol Biol. 2024; 2847:241-300.
PMID: 39312149
DOI: 10.1007/978-1-0716-4079-1_17.
Bergman S, Tuller T
NPJ Syst Biol Appl. 2024; 10(1):100.
PMID: 39227603
PMC: 11372048.
DOI: 10.1038/s41540-024-00431-8.
Krsek A, Baticic L, Sotosek V, Braut T
Diagnostics (Basel). 2024; 14(13).
PMID: 39001338
PMC: 11241541.
DOI: 10.3390/diagnostics14131448.
Bergman S, Tuller T
PLoS Comput Biol. 2024; 20(6):e1012214.
PMID: 38848440
PMC: 11189236.
DOI: 10.1371/journal.pcbi.1012214.
CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction.
Zhu W, Xie H, Chen Y, Zhang G
Int J Mol Sci. 2024; 25(8).
PMID: 38674012
PMC: 11050447.
DOI: 10.3390/ijms25084429.
gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement.
Motoche-Monar C, Ordonez J, Chang O, Gonzales-Zubiate F
Biomolecules. 2023; 13(12).
PMID: 38136570
PMC: 10741458.
DOI: 10.3390/biom13121698.
piCRISPR: Physically informed deep learning models for CRISPR/Cas9 off-target cleavage prediction.
Stortz F, Mak J, Minary P
Artif Intell Life Sci. 2023; 3:None.
PMID: 38047242
PMC: 10316064.
DOI: 10.1016/j.ailsci.2023.100075.
A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets.
Ham D, Browne T, Banglorewala P, Wilson T, Michael R, Gloor G
Nat Commun. 2023; 14(1):5514.
PMID: 37679324
PMC: 10485023.
DOI: 10.1038/s41467-023-41143-7.
Deep learning in CRISPR-Cas systems: a review of recent studies.
Lee M
Front Bioeng Biotechnol. 2023; 11:1226182.
PMID: 37469443
PMC: 10352112.
DOI: 10.3389/fbioe.2023.1226182.
Hybrid Multitask Learning Reveals Sequence Features Driving Specificity in the CRISPR/Cas9 System.
Vora D, Yadav S, Sundar D
Biomolecules. 2023; 13(4).
PMID: 37189388
PMC: 10135716.
DOI: 10.3390/biom13040641.
Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V
Brief Bioinform. 2023; 24(3).
PMID: 37080758
PMC: 10199778.
DOI: 10.1093/bib/bbad131.
CRISPR genome editing using computational approaches: A survey.
Alipanahi R, Safari L, Khanteymoori A
Front Bioinform. 2023; 2:1001131.
PMID: 36710911
PMC: 9875887.
DOI: 10.3389/fbinf.2022.1001131.
Comprehensive Review on the Use of Artificial Intelligence in Ophthalmology and Future Research Directions.
Anton N, Doroftei B, Curteanu S, Catalin L, Ilie O, Tarcoveanu F
Diagnostics (Basel). 2023; 13(1).
PMID: 36611392
PMC: 9818832.
DOI: 10.3390/diagnostics13010100.
: Predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning.
Yang Q, Wu L, Meng J, Ma L, Zuo E, Sun Y
Comput Struct Biotechnol J. 2022; 21:202-211.
PMID: 36582444
PMC: 9763632.
DOI: 10.1016/j.csbj.2022.11.034.
Comprehensive computational analysis of epigenetic descriptors affecting CRISPR-Cas9 off-target activity.
Mak J, Stortz F, Minary P
BMC Genomics. 2022; 23(1):805.
PMID: 36474180
PMC: 9724382.
DOI: 10.1186/s12864-022-09012-7.
Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics.
Bhat A, Nisar S, Mukherjee S, Saha N, Yarravarapu N, Lone S
J Transl Med. 2022; 20(1):534.
PMID: 36401282
PMC: 9673220.
DOI: 10.1186/s12967-022-03765-1.
A systematic mapping study on machine learning techniques for the prediction of CRISPR/Cas9 sgRNA target cleavage.
Dimauro G, Barletta V, Catacchio C, Colizzi L, Maglietta R, Ventura M
Comput Struct Biotechnol J. 2022; 20:5813-5823.
PMID: 36382194
PMC: 9630617.
DOI: 10.1016/j.csbj.2022.10.013.
Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Techniques.
Mattiello L, Rutgers M, Sua-Rojas M, Tavares R, Soares J, Begcy K
Front Plant Sci. 2022; 13:868027.
PMID: 35712599
PMC: 9194676.
DOI: 10.3389/fpls.2022.868027.
CRISPR-Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning.
Konstantakos V, Nentidis A, Krithara A, Paliouras G
Nucleic Acids Res. 2022; 50(7):3616-3637.
PMID: 35349718
PMC: 9023298.
DOI: 10.1093/nar/gkac192.