» Articles » PMID: 30478442

A Primer on Deep Learning in Genomics

Overview
Journal Nat Genet
Specialty Genetics
Date 2018 Nov 28
PMID 30478442
Citations 297
Authors
Affiliations
Soon will be listed here.
Abstract

Deep learning methods are a class of machine learning techniques capable of identifying highly complex patterns in large datasets. Here, we provide a perspective and primer on deep learning applications for genome analysis. We discuss successful applications in the fields of regulatory genomics, variant calling and pathogenicity scores. We include general guidance for how to effectively use deep learning methods as well as a practical guide to tools and resources. This primer is accompanied by an interactive online tutorial.

Citing Articles

Deep learning prioritizes cancer mutations that alter protein nucleocytoplasmic shuttling to drive tumorigenesis.

Zheng Y, Yu K, Lin J, Liang Z, Zhang Q, Li J Nat Commun. 2025; 16(1):2511.

PMID: 40087285 DOI: 10.1038/s41467-025-57858-8.


Tailored therapies for triple-negative breast cancer: current landscape and future perceptions.

Khan Y, Rizvi S, Raza A, Khan A, Hussain S, Khan N Naunyn Schmiedebergs Arch Pharmacol. 2025; .

PMID: 40029385 DOI: 10.1007/s00210-025-03896-4.


Machine Learning-Enhanced Extraction of Protein Signatures of Renal Cell Carcinoma from Proteomics Data.

Liu H, Ma Z, Lih T, Chen L, Hu Y, Wang Y bioRxiv. 2025; .

PMID: 40027663 PMC: 11870591. DOI: 10.1101/2025.02.17.638651.


A privacy-preserving dependable deep federated learning model for identifying new infections from genome sequences.

Mehedi S, Abdulrazak L, Ahmed K, Uddin M, Bui F, Chen L Sci Rep. 2025; 15(1):7291.

PMID: 40025035 PMC: 11873272. DOI: 10.1038/s41598-025-89612-x.


Sequence processing with quantum-inspired tensor networks.

Harvey C, Yeung R, Meichanetzidis K Sci Rep. 2025; 15(1):7155.

PMID: 40021695 PMC: 11871337. DOI: 10.1038/s41598-024-84295-2.


References
1.
Shaham U, Stanton K, Zhao J, Li H, Raddassi K, Montgomery R . Removal of batch effects using distribution-matching residual networks. Bioinformatics. 2017; 33(16):2539-2546. PMC: 5870543. DOI: 10.1093/bioinformatics/btx196. View

2.
Poplin R, Chang P, Alexander D, Schwartz S, Colthurst T, Ku A . A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018; 36(10):983-987. DOI: 10.1038/nbt.4235. View

3.
Korvigo I, Afanasyev A, Romashchenko N, Skoblov M . Generalising better: Applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies. PLoS One. 2018; 13(3):e0192829. PMC: 5851551. DOI: 10.1371/journal.pone.0192829. View

4.
Sundaram L, Gao H, Padigepati S, McRae J, Li Y, Kosmicki J . Predicting the clinical impact of human mutation with deep neural networks. Nat Genet. 2018; 50(8):1161-1170. PMC: 6237276. DOI: 10.1038/s41588-018-0167-z. View

5.
Libbrecht M, Noble W . Machine learning applications in genetics and genomics. Nat Rev Genet. 2015; 16(6):321-32. PMC: 5204302. DOI: 10.1038/nrg3920. View