» Articles » PMID: 31796736

Cryo-EM Structure of a 40 kDa SAM-IV Riboswitch RNA at 3.7 Å Resolution

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Dec 5
PMID 31796736
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

Specimens below 50 kDa have generally been considered too small to be analyzed by single-particle cryo-electron microscopy (cryo-EM). The high flexibility of pure RNAs makes it difficult to obtain high-resolution structures by cryo-EM. In bacteria, riboswitches regulate sulfur metabolism through binding to the S-adenosylmethionine (SAM) ligand and offer compelling targets for new antibiotics. SAM-I, SAM-I/IV, and SAM-IV are the three most commonly found SAM riboswitches, but the structure of SAM-IV is still unknown. Here, we report the structures of apo and SAM-bound SAM-IV riboswitches (119-nt, ~40 kDa) to 3.7 Å and 4.1 Å resolution, respectively, using cryo-EM. The structures illustrate homologies in the ligand-binding core but distinct peripheral tertiary contacts in SAM-IV compared to SAM-I and SAM-I/IV. Our results demonstrate the feasibility of resolving small RNAs with enough detail to enable detection of their ligand-binding pockets and suggest that cryo-EM could play a role in structure-assisted drug design for RNA.

Citing Articles

Complex Water Networks Visualized through 2.2-2.3 Å Cryogenic Electron Microscopy of RNA.

Kretsch R, Li S, Pintilie G, Palo M, Case D, Das R bioRxiv. 2025; .

PMID: 39896454 PMC: 11785237. DOI: 10.1101/2025.01.23.634578.


RNA folding kinetics control riboswitch sensitivity in vivo.

Bushhouse D, Fu J, Lucks J Nat Commun. 2025; 16(1):953.

PMID: 39843437 PMC: 11754884. DOI: 10.1038/s41467-024-55601-3.


RNA Structure: Past, Future, and Gene Therapy Applications.

Haseltine W, Hazel K, Patarca R Int J Mol Sci. 2025; 26(1.

PMID: 39795966 PMC: 11719923. DOI: 10.3390/ijms26010110.


Analysis of natural structures and chemical mapping data reveals local stability compensation in RNA.

Cornwell-Arquitt R, Nigh R, Hathaway M, Yesselman J, Hendrix D bioRxiv. 2024; .

PMID: 39713387 PMC: 11661157. DOI: 10.1101/2024.12.11.627843.


RNA sample optimization for cryo-EM analysis.

Chen X, Wang L, Xie J, Nowak J, Luo B, Zhang C Nat Protoc. 2024; .

PMID: 39548288 DOI: 10.1038/s41596-024-01072-1.


References
1.
Montange R, Batey R . Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. 2006; 441(7097):1172-5. DOI: 10.1038/nature04819. View

2.
Tang G, Peng L, Baldwin P, Mann D, Jiang W, Rees I . EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 2006; 157(1):38-46. DOI: 10.1016/j.jsb.2006.05.009. View

3.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

4.
Fan X, Wang J, Zhang X, Yang Z, Zhang J, Zhao L . Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Nat Commun. 2019; 10(1):2386. PMC: 6546690. DOI: 10.1038/s41467-019-10368-w. View

5.
Roth A, Breaker R . The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem. 2009; 78:305-34. PMC: 5325118. DOI: 10.1146/annurev.biochem.78.070507.135656. View