» Articles » PMID: 18593706

Crystal Structure of the Lysine Riboswitch Regulatory MRNA Element

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2008 Jul 3
PMID 18593706
Citations 112
Authors
Affiliations
Soon will be listed here.
Abstract

Riboswitches are metabolite-sensitive elements found in mRNAs that control gene expression through a regulatory secondary structural switch. Along with regulation of lysine biosynthetic genes, mutations within the lysine-responsive riboswitch (L-box) play a role in the acquisition of resistance to antimicrobial lysine analogs. To understand the structural basis for lysine binding, we have determined the 2.8 angstroms resolution crystal structure of lysine bound to the Thermotoga maritima asd lysine riboswitch ligand-binding domain. The structure reveals a complex architecture scaffolding a binding pocket completely enveloping lysine. Mutations conferring antimicrobial resistance cluster around this site as well as highly conserved long range interactions, indicating that they disrupt lysine binding or proper folding of the RNA. Comparison of the free and bound forms by x-ray crystallography, small angle x-ray scattering, and chemical probing reveals almost identical structures, indicating that lysine induces only limited and local conformational changes upon binding.

Citing Articles

Predicting RNA Structure and Dynamics with Deep Learning and Solution Scattering.

Patt E, Classen S, Hammel M, Schneidman-Duhovny D bioRxiv. 2025; .

PMID: 39764023 PMC: 11702515. DOI: 10.1101/2024.06.08.598075.


Predicting RNA structure and dynamics with deep learning and solution scattering.

Patt E, Classen S, Hammel M, Schneidman-Duhovny D Biophys J. 2024; 124(3):549-564.

PMID: 39722452 PMC: 11866959. DOI: 10.1016/j.bpj.2024.12.024.


Template switching enables chemical probing of native RNA structures.

Hall I, OSteen M, Gold S, Keane S, Weidmann C RNA. 2024; 31(1):113-125.

PMID: 39438135 PMC: 11648929. DOI: 10.1261/rna.079926.123.


Thermodynamic compensation to temperature extremes in B. subtilis vs T. maritima lysine riboswitches.

Marton Menendez A, Nesbitt D Biophys J. 2024; 123(19):3331-3345.

PMID: 39091026 PMC: 11480769. DOI: 10.1016/j.bpj.2024.07.039.


Mechanistic basis of the dynamic response of TWIK1 ionic selectivity to pH.

Chatelain F, Gilbert N, Bichet D, Jauch A, Feliciangeli S, Lesage F Nat Commun. 2024; 15(1):3849.

PMID: 38719838 PMC: 11079055. DOI: 10.1038/s41467-024-48067-w.


References
1.
Irnov , Kertsburg A, Winkler W . Genetic control by cis-acting regulatory RNAs in Bacillus subtilis: general principles and prospects for discovery. Cold Spring Harb Symp Quant Biol. 2007; 71:239-49. DOI: 10.1101/sqb.2006.71.021. View

2.
Mulhbacher J, Lafontaine D . Ligand recognition determinants of guanine riboswitches. Nucleic Acids Res. 2007; 35(16):5568-80. PMC: 2018637. DOI: 10.1093/nar/gkm572. View

3.
Montange R, Batey R . Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. 2006; 441(7097):1172-5. DOI: 10.1038/nature04819. View

4.
Barrick J, Breaker R . The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol. 2007; 8(11):R239. PMC: 2258182. DOI: 10.1186/gb-2007-8-11-r239. View

5.
Grundy F, Lehman S, Henkin T . The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A. 2003; 100(21):12057-62. PMC: 218712. DOI: 10.1073/pnas.2133705100. View