» Articles » PMID: 31604482

MetaCell: Analysis of Single-cell RNA-seq Data Using K-nn Graph Partitions

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2019 Oct 13
PMID 31604482
Citations 166
Authors
Affiliations
Soon will be listed here.
Abstract

scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homogenous groups of profiles that could have been resampled from the same cell. Unlike clustering analysis, our algorithm specializes at obtaining granular as opposed to maximal groups. We show how to use metacells as building blocks for complex quantitative transcriptional maps while avoiding data smoothing. Our algorithms are implemented in the MetaCell R/C++ software package.

Citing Articles

Development of a tertiary lymphoid structure-based prognostic model for breast cancer: integrating single-cell sequencing and machine learning to enhance patient outcomes.

Zhang X, Li L, Shi X, Zhao Y, Cai Z, Ni N Front Immunol. 2025; 16:1534928.

PMID: 40078998 PMC: 11897234. DOI: 10.3389/fimmu.2025.1534928.


Single-Cell Transcriptional Profiling Reveals Cell Type-Specific Sex-Dependent Molecular Patterns of Schizophrenia.

Zhou R, Zhang T, Sun B Int J Mol Sci. 2025; 26(5).

PMID: 40076849 PMC: 11900070. DOI: 10.3390/ijms26052227.


Augmenting the human interactome for disease prediction through gene networks inferred from human cell atlas.

Sung E, Cha J, Baek S, Lee I Anim Cells Syst (Seoul). 2025; 29(1):11-20.

PMID: 40066175 PMC: 11892045. DOI: 10.1080/19768354.2025.2472002.


Neutrophils physically interact with tumor cells to form a signaling niche promoting breast cancer aggressiveness.

Camargo S, Moskowitz O, Giladi A, Levinson M, Balaban R, Gola S Nat Cancer. 2025; .

PMID: 40055573 DOI: 10.1038/s43018-025-00924-3.


Genome-coverage single-cell histone modifications for embryo lineage tracing.

Liu M, Yue Y, Chen X, Xian K, Dong C, Shi M Nature. 2025; .

PMID: 40011786 DOI: 10.1038/s41586-025-08656-1.


References
1.
Street K, Risso D, Fletcher R, Das D, Ngai J, Yosef N . Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018; 19(1):477. PMC: 6007078. DOI: 10.1186/s12864-018-4772-0. View

2.
Li W, Li J . An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat Commun. 2018; 9(1):997. PMC: 5843666. DOI: 10.1038/s41467-018-03405-7. View

3.
Buettner F, Pratanwanich N, McCarthy D, Marioni J, Stegle O . f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol. 2017; 18(1):212. PMC: 5674756. DOI: 10.1186/s13059-017-1334-8. View

4.
Cao J, Packer J, Ramani V, Cusanovich D, Huynh C, Daza R . Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017; 357(6352):661-667. PMC: 5894354. DOI: 10.1126/science.aam8940. View

5.
Ji Z, Ji H . TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016; 44(13):e117. PMC: 4994863. DOI: 10.1093/nar/gkw430. View