» Articles » PMID: 31483562

Test-retest Reproducibility of a Multi-atlas Automated Segmentation Tool on Multimodality Brain MRI

Overview
Journal Brain Behav
Specialty Psychology
Date 2019 Sep 5
PMID 31483562
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: The increasing use of large sample sizes for population and personalized medicine requires high-throughput tools for imaging processing that can handle large amounts of data with diverse image modalities, perform a biologically meaningful information reduction, and result in comprehensive quantification. Exploring the reproducibility of these tools reveals the specific strengths and weaknesses that heavily influence the interpretation of results, contributing to transparence in science.

Methods: We tested-retested the reproducibility of MRICloud, a free automated method for whole-brain, multimodal MRI segmentation and quantification, on two public, independent datasets of healthy adults.

Results: The reproducibility was extremely high for T1-volumetric analysis, high for diffusion tensor images (DTI) (however, regionally variable), and low for resting-state fMRI.

Conclusion: In general, the reproducibility of the different modalities was slightly superior to that of widely used software. This analysis serves as a normative reference for planning samples and for the interpretation of structure-based MRI studies.

Citing Articles

Automatic Segmentation of Heschl Gyrus and Planum Temporale by MRICloud.

Perez-Heydrich C, Padova D, Kutten K, Ceritoglu C, Faria A, Ratnanather J Otol Neurotol Open. 2024; 4(3):e056.

PMID: 39328866 PMC: 11424062. DOI: 10.1097/ONO.0000000000000056.


Sensitivity of Advanced Magnetic Resonance Imaging to Progression over Six Months in Early Spinocerebellar Ataxia.

Rezende T, Petit E, Park Y, Tezenas du Montcel S, Joers J, DuBois J Mov Disord. 2024; 39(10):1856-1867.

PMID: 39056163 PMC: 11490388. DOI: 10.1002/mds.29934.


Brain multi-contrast, multi-atlas segmentation of diffusion tensor imaging and ensemble learning automatically diagnose late-life depression.

Siarkos K, Karavasilis E, Velonakis G, Papageorgiou C, Smyrnis N, Kelekis N Sci Rep. 2023; 13(1):22743.

PMID: 38123613 PMC: 10733280. DOI: 10.1038/s41598-023-49935-z.


Regression models for partially localized fMRI connectivity analyses.

Smith B, Zhao Y, Lindquist M, Caffo B Front Neuroimaging. 2023; 2:1178359.

PMID: 38025311 PMC: 10679340. DOI: 10.3389/fnimg.2023.1178359.


Longitudinal imaging highlights preferential basal ganglia circuit atrophy in Huntington's disease.

Liu C, Younes L, Tong X, Hinkle J, Wang M, Phatak S Brain Commun. 2023; 5(5):fcad214.

PMID: 37744022 PMC: 10516592. DOI: 10.1093/braincomms/fcad214.


References
1.
Tang X, Crocetti D, Kutten K, Ceritoglu C, Albert M, Mori S . Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: testing using data with a broad range of anatomical and photometric profiles. Front Neurosci. 2015; 9:61. PMC: 4347448. DOI: 10.3389/fnins.2015.00061. View

2.
Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J . Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants. Neuroimage. 2009; 46(2):486-99. PMC: 2885858. DOI: 10.1016/j.neuroimage.2009.01.002. View

3.
Huang L, Wang X, Baliki M, Wang L, Apkarian A, Parrish T . Reproducibility of structural, resting-state BOLD and DTI data between identical scanners. PLoS One. 2012; 7(10):e47684. PMC: 3485040. DOI: 10.1371/journal.pone.0047684. View

4.
Wang H, Yushkevich P . Multi-atlas segmentation with joint label fusion and corrective learning-an open source implementation. Front Neuroinform. 2013; 7:27. PMC: 3837555. DOI: 10.3389/fninf.2013.00027. View

5.
Vollmar C, OMuircheartaigh J, Barker G, Symms M, Thompson P, Kumari V . Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage. 2010; 51(4):1384-94. PMC: 3163823. DOI: 10.1016/j.neuroimage.2010.03.046. View