» Articles » PMID: 31471561

Knock-in of Murine Calr Del52 Induces Essential Thrombocythemia with Slow-rising Dominance in Mice and Reveals Key Role of Calr Exon 9 in Cardiac Development

Abstract

Frameshifting mutations (-1/+2) of the calreticulin (CALR) gene are responsible for the development of essential thrombocythemia (ET) and primary myelofibrosis (PMF). The mutant CALR proteins activate the thrombopoietin receptor (TpoR) inducing cytokine-independent megakaryocyte progenitor proliferation. Here, we generated via CRISPR/Cas9 technology two knock-in mouse models that are heterozygous for a type-I murine Calr mutation. These mice exhibit an ET phenotype with elevated circulating platelets compared with wild-type controls, consistent with our previous results showing that murine CALR mutants activate TpoR. We also show that the mutant CALR proteins can be detected in plasma. The phenotype of Calr del52 is transplantable, and the Calr mutated hematopoietic cells have a slow-rising advantage over wild-type hematopoiesis. Importantly, a homozygous state of a type-1 Calr mutation is lethal at a late embryonic development stage, showing narrowed ventricular myocardium walls, similar to the murine Calr knockout phenotype, pointing to the C terminus of CALR as crucial for heart development.

Citing Articles

Identification of novel nutrient sensitive human yolk sac functions required for embryogenesis.

White M, Arif-Pardy J, Bloise E, Connor K Sci Rep. 2024; 14(1):29734.

PMID: 39613845 PMC: 11607434. DOI: 10.1038/s41598-024-81061-2.


Lysosomal degradation targets mutant calreticulin and the thrombopoietin receptor in myeloproliferative neoplasms.

Kaur A, Venkatesan A, Kandarpa M, Talpaz M, Raghavan M Blood Adv. 2024; 8(13):3372-3387.

PMID: 38640435 PMC: 11255115. DOI: 10.1182/bloodadvances.2023011432.


Differential in vivo roles of Mpl cytoplasmic tyrosine residues in murine hematopoiesis and myeloproliferative disease.

Behrens K, Kauppi M, Viney E, Kueh A, Hyland C, Willson T Leukemia. 2024; 38(6):1342-1352.

PMID: 38491305 PMC: 11147766. DOI: 10.1038/s41375-024-02219-5.


Therapeutic cancer vaccination against mutant calreticulin in myeloproliferative neoplasms induces expansion of specific T cells in the periphery but specific T cells fail to enrich in the bone marrow.

Holmstrom M, Andersen M, Traynor S, Ahmad S, Landkildehus Lisle T, Grauslund J Front Immunol. 2023; 14:1240678.

PMID: 37662956 PMC: 10470021. DOI: 10.3389/fimmu.2023.1240678.


Effects of calreticulin mutations on cell transformation and immunity.

Desikan H, Kaur A, Pogozheva I, Raghavan M J Cell Mol Med. 2023; 27(8):1032-1044.

PMID: 36916035 PMC: 10098294. DOI: 10.1111/jcmm.17713.


References
1.
Arber D, Orazi A, Hasserjian R, Thiele J, Borowitz M, Le Beau M . The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127(20):2391-405. DOI: 10.1182/blood-2016-03-643544. View

2.
Kralovics R, Passamonti F, Buser A, Teo S, Tiedt R, Passweg J . A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005; 352(17):1779-90. DOI: 10.1056/NEJMoa051113. View

3.
James C, Ugo V, Le Couedic J, Staerk J, Delhommeau F, Lacout C . A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005; 434(7037):1144-8. DOI: 10.1038/nature03546. View

4.
Levine R, Wadleigh M, Cools J, Ebert B, Wernig G, Huntly B . Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005; 7(4):387-97. DOI: 10.1016/j.ccr.2005.03.023. View

5.
Baxter E, Scott L, Campbell P, East C, Fourouclas N, Swanton S . Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005; 365(9464):1054-61. DOI: 10.1016/S0140-6736(05)71142-9. View