» Articles » PMID: 31320640

Whole-genome Landscape of Mucosal Melanoma Reveals Diverse Drivers and Therapeutic Targets

Abstract

Knowledge of key drivers and therapeutic targets in mucosal melanoma is limited due to the paucity of comprehensive mutation data on this rare tumor type. To better understand the genomic landscape of mucosal melanoma, here we describe whole genome sequencing analysis of 67 tumors and validation of driver gene mutations by exome sequencing of 45 tumors. Tumors have a low point mutation burden and high numbers of structural variants, including recurrent structural rearrangements targeting TERT, CDK4 and MDM2. Significantly mutated genes are NRAS, BRAF, NF1, KIT, SF3B1, TP53, SPRED1, ATRX, HLA-A and CHD8. SF3B1 mutations occur more commonly in female genital and anorectal melanomas and CTNNB1 mutations implicate a role for WNT signaling defects in the genesis of some mucosal melanomas. TERT aberrations and ATRX mutations are associated with alterations in telomere length. Mutation profiles of the majority of mucosal melanomas suggest potential susceptibility to CDK4/6 and/or MEK inhibitors.

Citing Articles

PARP4 deficiency enhances sensitivity to ATM inhibitor by impairing DNA damage repair in melanoma.

Li Y, Liu Y, Ma J, Yang Y, Yue Q, Zhu G Cell Death Discov. 2025; 11(1):35.

PMID: 39885134 PMC: 11782537. DOI: 10.1038/s41420-025-02296-0.


Oronasal mucosal melanoma is defined by two transcriptional subtypes in humans and dogs with implications for diagnosis and therapy.

Bowlt Blacklock K, Donnelly K, Lu Y, Del Pozo J, Glendinning L, Polton G J Pathol. 2025; 265(3):245-259.

PMID: 39828982 PMC: 11794980. DOI: 10.1002/path.6377.


Atezolizumab plus bevacizumab in patients with unresectable or metastatic mucosal melanoma: 3-year survival update and multi-omics analysis.

Dai J, Xu T, Li L, Fang M, Lin J, Cao J Clin Transl Med. 2025; 15(1):e70169.

PMID: 39757723 PMC: 11702371. DOI: 10.1002/ctm2.70169.


Cyclin-Dependent Kinase Inhibitors in the Rare Subtypes of Melanoma Therapy.

Kaszubski J, Gagat M, Grzanka A, Wawrzyniak A, Niklinska W, Lapot M Molecules. 2024; 29(22).

PMID: 39598629 PMC: 11596694. DOI: 10.3390/molecules29225239.


Genetic Characteristics of Cutaneous, Acral, and Mucosal Melanoma in Japan.

Hida T, Idogawa M, Kato J, Kiniwa Y, Horimoto K, Sato S Cancer Med. 2024; 13(22):e70360.

PMID: 39564955 PMC: 11577301. DOI: 10.1002/cam4.70360.


References
1.
Abecasis G, Altshuler D, Auton A, Brooks L, Durbin R, Gibbs R . A map of human genome variation from population-scale sequencing. Nature. 2010; 467(7319):1061-73. PMC: 3042601. DOI: 10.1038/nature09534. View

2.
Raine K, Van Loo P, Wedge D, Jones D, Menzies A, Butler A . ascatNgs: Identifying Somatically Acquired Copy-Number Alterations from Whole-Genome Sequencing Data. Curr Protoc Bioinformatics. 2016; 56:15.9.1-15.9.17. PMC: 6097604. DOI: 10.1002/cpbi.17. View

3.
Lek M, Karczewski K, Minikel E, Samocha K, Banks E, Fennell T . Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 536(7616):285-91. PMC: 5018207. DOI: 10.1038/nature19057. View

4.
Nones K, Waddell N, Wayte N, Patch A, Bailey P, Newell F . Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun. 2014; 5:5224. PMC: 4596003. DOI: 10.1038/ncomms6224. View

5.
Barthel F, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin S . Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017; 49(3):349-357. PMC: 5571729. DOI: 10.1038/ng.3781. View