» Articles » PMID: 31139714

Defining the S1 Side of Glycosylation Reactions: Stereoselectivity of Glycopyranosyl Cations

Abstract

The broad application of well-defined synthetic oligosaccharides in glycobiology and glycobiotechnology is largely hampered by the lack of sufficient amounts of synthetic carbohydrate specimens. Insufficient knowledge of the glycosylation reaction mechanism thwarts the routine assembly of these materials. Glycosyl cations are key reactive intermediates in the glycosylation reaction, but their high reactivity and fleeting nature have precluded the determination of clear structure-reactivity-stereoselectivity principles for these species. We report a combined experimental and computational method that connects the stereoselectivity of oxocarbenium ions to the full ensemble of conformations these species can adopt, mapped in conformational energy landscapes (CEL), in a quantitative manner. The detailed description of stereoselective S1-type glycosylation reactions firmly establishes glycosyl cations as true reaction intermediates and will enable the generation of new stereoselective glycosylation methodology.

Citing Articles

Elucidating reactive sugar-intermediates by mass spectrometry.

Chang C, Wehner D, Prabhu G, Moon E, Safferthal M, Bechtella L Commun Chem. 2025; 8(1):67.

PMID: 40055429 PMC: 11889121. DOI: 10.1038/s42004-025-01467-5.


The effect of neighbouring group participation and possible long range remote group participation in glycosylation.

Das R, Mukhopadhyay B Beilstein J Org Chem. 2025; 21:369-406.

PMID: 39996165 PMC: 11849559. DOI: 10.3762/bjoc.21.27.


Modeling of the Carbohydrate Oxacarbenium Ionic Intermediates of Glycosylation Reactions with Explicit Account for Protective Group Effects.

Gerbst A, Komarova B, Vlasenko A, Nifantiev N ACS Omega. 2025; 10(2):2305-2313.

PMID: 39866614 PMC: 11755171. DOI: 10.1021/acsomega.4c10086.


Stereoelectronic Effect of Protecting Groups on the Stability of Galactosyl Donor Intermediates.

Kwok R, Rutkoski R, Nagorny P, Marianski M Molecules. 2025; 30(2).

PMID: 39860088 PMC: 11767833. DOI: 10.3390/molecules30020218.


Mechanistic insight into benzylidene-directed glycosylation reactions using cryogenic infrared spectroscopy.

Chang C, Greis K, Prabhu G, Wehner D, Kirschbaum C, Ober K Nat Synth. 2024; 3(11):1377-1384.

PMID: 39524531 PMC: 11549046. DOI: 10.1038/s44160-024-00619-0.


References
1.
Crich D, Vinogradova O . On the influence of the C2-O2 and C3-O3 bonds in 4,6-O-benzylidene-directed beta-mannopyranosylation and alpha-glucopyranosylation. J Org Chem. 2006; 71(22):8473-80. PMC: 2621314. DOI: 10.1021/jo061417b. View

2.
Ayala L, Lucero C, Romero J, Tabacco S, Woerpel K . Stereochemistry of nucleophilic substitution reactions depending upon substituent: evidence for electrostatic stabilization of pseudoaxial conformers of oxocarbenium ions by heteroatom substituents. J Am Chem Soc. 2003; 125(50):15521-8. DOI: 10.1021/ja037935a. View

3.
Elferink H, Severijnen M, Martens J, Mensink R, Berden G, Oomens J . Direct Experimental Characterization of Glycosyl Cations by Infrared Ion Spectroscopy. J Am Chem Soc. 2018; 140(19):6034-6038. PMC: 5958338. DOI: 10.1021/jacs.8b01236. View

4.
Wang C, Lee J, Luo S, Kulkarni S, Huang Y, Lee C . Regioselective one-pot protection of carbohydrates. Nature. 2007; 446(7138):896-9. DOI: 10.1038/nature05730. View

5.
Guillemineau M, Auzanneau F . Challenging deprotection steps during the synthesis of tetra- and pentasaccharide fragments of the Le(a)Le(x) tumor-associated hexasaccharide antigen. J Org Chem. 2012; 77(20):8864-78. DOI: 10.1021/jo301644w. View