» Articles » PMID: 31063138

Artificial Intelligence at the Intersection of Pathology and Radiology in Prostate Cancer

Overview
Date 2019 May 8
PMID 31063138
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Pathologic grading plays a key role in prostate cancer risk stratification and treatment selection, traditionally assessed from systemic core needle biopsies sampled throughout the prostate gland. Multiparametric magnetic resonance imaging (mpMRI) has become a well-established clinical tool for detecting and localizing prostate cancer. However, both pathologic and radiologic assessment suffer from poor reproducibility among readers. Artificial intelligence (AI) methods show promise in aiding the detection and assessment of imaging-based tasks, dependent on the curation of high-quality training sets. This review provides an overview of recent advances in AI applied to mpMRI and digital pathology in prostate cancer which enable advanced characterization of disease through combined radiology-pathology assessment.

Citing Articles

Cold storage surpasses the impact of biological age and donor characteristics on red blood cell morphology classified by deep machine learning.

Zhao Y, Brandon-Coatham M, Yazdanbakhsh M, Mykhailova O, William N, Osmani R Sci Rep. 2025; 15(1):7735.

PMID: 40044706 PMC: 11882836. DOI: 10.1038/s41598-025-90760-3.


Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools.

Alqahtani S Diagnostics (Basel). 2024; 14(22).

PMID: 39594242 PMC: 11592433. DOI: 10.3390/diagnostics14222576.


Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine.

Muhaimil A, Pendem S, Sampathilla N, P S P, Nayak K, Chadaga K F1000Res. 2024; 13:1035.

PMID: 39483709 PMC: 11525099. DOI: 10.12688/f1000research.154680.2.


Deep bone oncology Diagnostics: Computed tomography based Machine learning for detection of bone tumors from breast cancer metastasis.

Zhao X, Dong Y, Xu L, Shen Y, Qin G, Zhang Z J Bone Oncol. 2024; 48:100638.

PMID: 39391583 PMC: 11466622. DOI: 10.1016/j.jbo.2024.100638.


Healthcare Transformation: Artificial Intelligence Is the Dire Imperative of the Day.

Choubey A, Choubey S, K P, Daulatabad V, John N Cureus. 2024; 16(6):e62652.

PMID: 39036139 PMC: 11258957. DOI: 10.7759/cureus.62652.


References
1.
Kweldam C, Wildhagen M, Steyerberg E, Bangma C, van der Kwast T, van Leenders G . Cribriform growth is highly predictive for postoperative metastasis and disease-specific death in Gleason score 7 prostate cancer. Mod Pathol. 2014; 28(3):457-64. DOI: 10.1038/modpathol.2014.116. View

2.
Jamshidi N, Margolis D, Raman S, Huang J, Reiter R, Kuo M . Multiregional Radiogenomic Assessment of Prostate Microenvironments with Multiparametric MR Imaging and DNA Whole-Exome Sequencing of Prostate Glands with Adenocarcinoma. Radiology. 2017; 284(1):109-119. PMC: 6197054. DOI: 10.1148/radiol.2017162827. View

3.
McGarry S, Hurrell S, Iczkowski K, Hall W, Kaczmarowski A, Banerjee A . Radio-pathomic Maps of Epithelium and Lumen Density Predict the Location of High-Grade Prostate Cancer. Int J Radiat Oncol Biol Phys. 2018; 101(5):1179-1187. PMC: 6190585. DOI: 10.1016/j.ijrobp.2018.04.044. View

4.
Stotzka R, Manner R, Bartels P, Thompson D . A hybrid neural and statistical classifier system for histopathologic grading of prostatic lesions. Anal Quant Cytol Histol. 1995; 17(3):204-18. View

5.
Mehrtash A, Sedghi A, Ghafoorian M, Taghipour M, Tempany C, Wells 3rd W . Classification of Clinical Significance of MRI Prostate Findings Using 3D Convolutional Neural Networks. Proc SPIE Int Soc Opt Eng. 2017; 10134. PMC: 5467889. DOI: 10.1117/12.2277123. View