» Articles » PMID: 35908102

Tasks for Artificial Intelligence in Prostate MRI

Overview
Journal Eur Radiol Exp
Date 2022 Jul 30
PMID 35908102
Authors
Affiliations
Soon will be listed here.
Abstract

The advent of precision medicine, increasing clinical needs, and imaging availability among many other factors in the prostate cancer diagnostic pathway has engendered the utilization of artificial intelligence (AI). AI carries a vast number of potential applications in every step of the prostate cancer diagnostic pathway from classifying/improving prostate multiparametric magnetic resonance image quality, prostate segmentation, anatomically segmenting cancer suspicious foci, detecting and differentiating clinically insignificant cancers from clinically significant cancers on a voxel-level, and classifying entire lesions into Prostate Imaging Reporting and Data System categories/Gleason scores. Multiple studies in all these areas have shown many promising results approximating accuracies of radiologists. Despite this flourishing research, more prospective multicenter studies are needed to uncover the full impact and utility of AI on improving radiologist performance and clinical management of prostate cancer. In this narrative review, we aim to introduce emerging medical imaging AI paper quality metrics such as the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) and Field-Weighted Citation Impact (FWCI), dive into some of the top AI models for segmentation, detection, and classification.

Citing Articles

Prediction of adverse pathology in prostate cancer using a multimodal deep learning approach based on [F]PSMA-1007 PET/CT and multiparametric MRI.

Lin H, Yao F, Yi X, Yuan Y, Xu J, Chen L Eur J Nucl Med Mol Imaging. 2025; .

PMID: 39969539 DOI: 10.1007/s00259-025-07134-0.


Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools.

Alqahtani S Diagnostics (Basel). 2024; 14(22).

PMID: 39594242 PMC: 11592433. DOI: 10.3390/diagnostics14222576.


Interpreting Prostate Multiparametric MRI: Beyond Adenocarcinoma - Anatomical Variations, Mimickers, and Post-Intervention Changes.

Yilmaz E, Esengur O, Gelikman D, Turkbey B Semin Ultrasound CT MR. 2024; 46(1):2-30.

PMID: 39580037 PMC: 11741936. DOI: 10.1053/j.sult.2024.11.001.


Targeted Prostate Biopsy: How, When, and Why? A Systematic Review.

Rebez G, Barbiero M, Simonato F, Claps F, Siracusano S, Giaimo R Diagnostics (Basel). 2024; 14(17).

PMID: 39272649 PMC: 11394632. DOI: 10.3390/diagnostics14171864.


AI in prostate MRI: enhancing accuracy and reducing overdiagnosis.

Turkbey B Nat Rev Urol. 2024; .

PMID: 39261564 DOI: 10.1038/s41585-024-00940-5.


References
1.
Harmon S, Tuncer S, Sanford T, Choyke P, Turkbey B . Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Interv Radiol. 2019; 25(3):183-188. PMC: 6521904. DOI: 10.5152/dir.2019.19125. View

2.
Van Booven D, Kuchakulla M, Pai R, Frech F, Ramasahayam R, Reddy P . A Systematic Review of Artificial Intelligence in Prostate Cancer. Res Rep Urol. 2021; 13:31-39. PMC: 7837533. DOI: 10.2147/RRU.S268596. View

3.
Ahmed H, El-Shater Bosaily A, Brown L, Gabe R, Kaplan R, Parmar M . Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017; 389(10071):815-822. DOI: 10.1016/S0140-6736(16)32401-1. View

4.
Giganti F, Lindner S, Piper J, Kasivisvanathan V, Emberton M, Moore C . Multiparametric prostate MRI quality assessment using a semi-automated PI-QUAL software program. Eur Radiol Exp. 2021; 5(1):48. PMC: 8568748. DOI: 10.1186/s41747-021-00245-x. View

5.
van Leeuwen K, Schalekamp S, Rutten M, van Ginneken B, de Rooij M . Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol. 2021; 31(6):3797-3804. PMC: 8128724. DOI: 10.1007/s00330-021-07892-z. View