» Articles » PMID: 27373749

Stain Normalization Using Sparse AutoEncoders (StaNoSA): Application to Digital Pathology

Overview
Specialty Radiology
Date 2016 Jul 5
PMID 27373749
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results.

Citing Articles

A High-Resolution Digital Pathological Image Staining Style Transfer Model Based on Gradient Guidance.

Tang Y, Zhou Y, Zhang S, Lu Y Bioengineering (Basel). 2025; 12(2).

PMID: 40001706 PMC: 11851416. DOI: 10.3390/bioengineering12020187.


Using digital pathology to standardize and automate histological evaluations of environmental samples.

Tanabe P, Schlenk D, Forsgren K, Pampanin D Environ Toxicol Chem. 2025; 44(2):306-317.

PMID: 39919237 PMC: 11816309. DOI: 10.1093/etojnl/vgae038.


Optimized Whole-Slide-Image H&E Stain Normalization: A Step Towards Big Data Integration in Digital Pathology.

Agraz J, Agraz C, Chen A, Rice C, Pozos R, Aelterman S IEEE Open J Eng Med Biol. 2024; 6:35-40.

PMID: 39564562 PMC: 11573418. DOI: 10.1109/OJEMB.2024.3455011.


Deep feature batch correction using ComBat for machine learning applications in computational pathology.

Murchan P, Broin P, Baird A, Sheils O, Finn S J Pathol Inform. 2024; 15:100396.

PMID: 39398947 PMC: 11470259. DOI: 10.1016/j.jpi.2024.100396.


CohortFinder: an open-source tool for data-driven partitioning of digital pathology and imaging cohorts to yield robust machine-learning models.

Fan F, Martinez G, DeSilvio T, Shin J, Chen Y, Jacobs J Npj Imaging. 2024; 2(1):15.

PMID: 38962496 PMC: 11216973. DOI: 10.1038/s44303-024-00018-2.


References
1.
Hipp J, Cheng J, Toner M, Tompkins R, Balis U . Spatially Invariant Vector Quantization: A pattern matching algorithm for multiple classes of image subject matter including pathology. J Pathol Inform. 2011; 2:13. PMC: 3049270. DOI: 10.4103/2153-3539.77175. View

2.
Khan A, Rajpoot N, Treanor D, Magee D . A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng. 2014; 61(6):1729-38. DOI: 10.1109/TBME.2014.2303294. View

3.
Qureshi H, Sertel O, Rajpoot N, Wilson R, Gurcan M . Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification. Med Image Comput Comput Assist Interv. 2008; 11(Pt 2):196-204. DOI: 10.1007/978-3-540-85990-1_24. View

4.
Wang Y, Chang S, Wu L, Tsai S, Sun Y . A color-based approach for automated segmentation in tumor tissue classification. Annu Int Conf IEEE Eng Med Biol Soc. 2007; 2007:6577-80. DOI: 10.1109/IEMBS.2007.4353866. View

5.
Monaco J, Hipp J, Lucas D, Smith S, Balis U, Madabhushi A . Image segmentation with implicit color standardization using spatially constrained expectation maximization: detection of nuclei. Med Image Comput Comput Assist Interv. 2013; 15(Pt 1):365-72. DOI: 10.1007/978-3-642-33415-3_45. View