» Articles » PMID: 34860562

Deep Learning-based Artificial Intelligence Applications in Prostate MRI: Brief Summary

Overview
Journal Br J Radiol
Specialty Radiology
Date 2021 Dec 3
PMID 34860562
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Prostate cancer (PCa) is the most common cancer type in males in the Western World. MRI has an established role in diagnosis of PCa through guiding biopsies. Due to multistep complex nature of the MRI-guided PCa diagnosis pathway, diagnostic performance has a big variation. Developing artificial intelligence (AI) models using machine learning, particularly deep learning, has an expanding role in radiology. Specifically, for prostate MRI, several AI approaches have been defined in the literature for prostate segmentation, lesion detection and classification with the aim of improving diagnostic performance and interobserver agreement. In this review article, we summarize the use of radiology applications of AI in prostate MRI.

Citing Articles

A pilot study of AI-assisted reading of prostate MRI in Organized Prostate Cancer Testing.

Thimansson E, Zackrisson S, Jaderling F, Alterbeck M, Jiborn T, Bjartell A Acta Oncol. 2024; 63:816-821.

PMID: 39473176 PMC: 11541807. DOI: 10.2340/1651-226X.2024.40475.


A Comprehensive Review of Artificial Intelligence in Prostate Cancer Care: State-of-the-Art Diagnostic Tools and Future Outlook.

Agrawal S, Vagha S Cureus. 2024; 16(8):e66225.

PMID: 39238711 PMC: 11374581. DOI: 10.7759/cureus.66225.


Artificial intelligence in the management of prostate cancer.

Khanna R, Martinez A, Raison N, Ourselin S, Briganti A, Montorsi F Nat Rev Urol. 2024; 22(3):125-126.

PMID: 39232058 DOI: 10.1038/s41585-024-00938-z.


The impact of prostate volume estimation on the risk-adapted biopsy decision based on prostate-specific antigen density and magnetic resonance imaging score.

Baudewyns A, Guenzel K, Halinski A, Dariane C, Delavar G, Anract J World J Urol. 2024; 42(1):322.

PMID: 38747982 DOI: 10.1007/s00345-024-04962-x.


T2-weighted imaging-based deep-learning method for noninvasive prostate cancer detection and Gleason grade prediction: a multicenter study.

Jin L, Yu Z, Gao F, Li M Insights Imaging. 2024; 15(1):111.

PMID: 38713377 PMC: 11076444. DOI: 10.1186/s13244-024-01682-z.


References
1.
Cuocolo R, Cipullo M, Stanzione A, Romeo V, Green R, Cantoni V . Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol. 2020; 30(12):6877-6887. DOI: 10.1007/s00330-020-07027-w. View

2.
Gassenmaier S, Afat S, Nickel D, Mostapha M, Herrmann J, Othman A . Deep learning-accelerated T2-weighted imaging of the prostate: Reduction of acquisition time and improvement of image quality. Eur J Radiol. 2021; 137:109600. DOI: 10.1016/j.ejrad.2021.109600. View

3.
Ahdoot M, Wilbur A, Reese S, Lebastchi A, Mehralivand S, Gomella P . MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N Engl J Med. 2020; 382(10):917-928. PMC: 7323919. DOI: 10.1056/NEJMoa1910038. View

4.
Mehralivand S, Bednarova S, Shih J, Mertan F, Gaur S, Merino M . Prospective Evaluation of PI-RADS™ Version 2 Using the International Society of Urological Pathology Prostate Cancer Grade Group System. J Urol. 2017; 198(3):583-590. PMC: 7900896. DOI: 10.1016/j.juro.2017.03.131. View

5.
Winkel D, Tong A, Lou B, Kamen A, Comaniciu D, Disselhorst J . A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study. Invest Radiol. 2021; 56(10):605-613. DOI: 10.1097/RLI.0000000000000780. View