» Articles » PMID: 30914419

Homeostatic Scaling of Active Zone Scaffolds Maintains Global Synaptic Strength

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2019 Mar 28
PMID 30914419
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Synaptic terminals grow and retract throughout life, yet synaptic strength is maintained within stable physiological ranges. To study this process, we investigated () mutants. Although active zone (AZ) number is doubled in mutants, a compensatory reduction in their size homeostatically adjusts global neurotransmitter output to maintain synaptic strength. We find an inverse adaptation in mutants. Additional analyses using confocal, STED, and electron microscopy reveal a stoichiometric tuning of AZ scaffolds and nanoarchitecture. Axonal transport of synaptic cargo via the lysosomal kinesin adapter Arl8 regulates AZ abundance to modulate global synaptic output and sustain the homeostatic potentiation of neurotransmission. Finally, we find that this AZ scaling can interface with two independent homeostats, depression and potentiation, to remodel AZ structure and function, demonstrating a robust balancing of separate homeostatic adaptations. Thus, AZs are pliable substrates with elastic and modular nanostructures that can be dynamically sculpted to stabilize and tune both local and global synaptic strength.

Citing Articles

Active zone maturation state controls synaptic output and release mode and is differentially regulated by neuronal activity.

Akbergenova Y, Matthias J, Littleton J bioRxiv. 2025; .

PMID: 39975213 PMC: 11838553. DOI: 10.1101/2025.02.03.636302.


Distinct input-specific mechanisms enable presynaptic homeostatic plasticity.

Chien C, He K, Perry S, Tchitchkan E, Han Y, Li X Sci Adv. 2025; 11(7):eadr0262.

PMID: 39951523 PMC: 11827636. DOI: 10.1126/sciadv.adr0262.


Mitochondrial Complex I and ROS control synapse function through opposing pre- and postsynaptic mechanisms.

Mallik B, Frank C bioRxiv. 2025; .

PMID: 39803545 PMC: 11722341. DOI: 10.1101/2024.12.30.630694.


A non-conducting role of the Ca1.4 Ca channel drives homeostatic plasticity at the cone photoreceptor synapse.

Maddox J, Ordemann G, de la Rosa Vazquez J, Huang A, Gault C, Wisner S Elife. 2024; 13.

PMID: 39531384 PMC: 11556788. DOI: 10.7554/eLife.94908.


Muscle-fiber specific genetic manipulation of sallimus severely impacts neuromuscular development, morphology, and physiology.

Michael A, Hana T, Mousa V, Ormerod K Front Physiol. 2024; 15:1429317.

PMID: 39351283 PMC: 11439786. DOI: 10.3389/fphys.2024.1429317.


References
1.
Paradis S, Sweeney S, DAVIS G . Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron. 2001; 30(3):737-49. DOI: 10.1016/s0896-6273(01)00326-9. View

2.
Murthy V, Schikorski T, Stevens C, Zhu Y . Inactivity produces increases in neurotransmitter release and synapse size. Neuron. 2001; 32(4):673-82. DOI: 10.1016/s0896-6273(01)00500-1. View

3.
Aberle H, Pejmun Haghighi A, Fetter R, McCabe B, Magalhaes T, Goodman C . wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron. 2002; 33(4):545-58. DOI: 10.1016/s0896-6273(02)00589-5. View

4.
Verstreken P, Kjaerulff O, Lloyd T, Atkinson R, Zhou Y, Meinertzhagen I . Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell. 2002; 109(1):101-12. DOI: 10.1016/s0092-8674(02)00688-8. View

5.
Mackler J, DRUMMOND J, Loewen C, ROBINSON I, Reist N . The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature. 2002; 418(6895):340-4. DOI: 10.1038/nature00846. View