» Articles » PMID: 30902970

Complex Formation of APP with GABA Receptors Links Axonal Trafficking to Amyloidogenic Processing

Abstract

GABA receptors (GBRs) are key regulators of synaptic release but little is known about trafficking mechanisms that control their presynaptic abundance. We now show that sequence-related epitopes in APP, AJAP-1 and PIANP bind with nanomolar affinities to the N-terminal sushi-domain of presynaptic GBRs. Of the three interacting proteins, selectively the genetic loss of APP impaired GBR-mediated presynaptic inhibition and axonal GBR expression. Proteomic and functional analyses revealed that APP associates with JIP and calsyntenin proteins that link the APP/GBR complex in cargo vesicles to the axonal trafficking motor. Complex formation with GBRs stabilizes APP at the cell surface and reduces proteolysis of APP to Aβ, a component of senile plaques in Alzheimer's disease patients. Thus, APP/GBR complex formation links presynaptic GBR trafficking to Aβ formation. Our findings support that dysfunctional axonal trafficking and reduced GBR expression in Alzheimer's disease increases Aβ formation.

Citing Articles

VTA dopamine neurons are hyperexcitable in 3xTg-AD mice due to casein kinase 2-dependent SK channel dysfunction.

Blankenship H, Carter K, Pham K, Cassidy N, Markiewicz A, Thellmann M Nat Commun. 2024; 15(1):9673.

PMID: 39516200 PMC: 11549218. DOI: 10.1038/s41467-024-53891-1.


The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology.

Fanlo-Ucar H, Picon-Pages P, Herrera-Fernandez V, Ill-Raga G, Munoz F Antioxidants (Basel). 2024; 13(10).

PMID: 39456461 PMC: 11505517. DOI: 10.3390/antiox13101208.


Smooth operator(s): dialing up and down neurotransmitter responses by G-protein regulators.

Philibert C, Garcia-Marcos M Trends Cell Biol. 2024; .

PMID: 39054106 PMC: 11757802. DOI: 10.1016/j.tcb.2024.07.002.


An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission.

Akyuz E, Arulsamy A, Aslan F, Sarisozen B, Guney B, Hekimoglu A Mol Neurobiol. 2024; 62(2):1631-1674.

PMID: 39012443 PMC: 11772559. DOI: 10.1007/s12035-024-04333-y.


Monoallelic de novo loss-of-function variants disrupt trans-synaptic control of neurotransmitter release.

Fruh S, Boudkkazi S, Koppensteiner P, Sereikaite V, Chen L, Fernandez-Fernandez D Sci Adv. 2024; 10(28):eadk5462.

PMID: 38985877 PMC: 11235169. DOI: 10.1126/sciadv.adk5462.


References
1.
Pasciuto E, Ahmed T, Wahle T, Gardoni F, DAndrea L, Pacini L . Dysregulated ADAM10-Mediated Processing of APP during a Critical Time Window Leads to Synaptic Deficits in Fragile X Syndrome. Neuron. 2015; 87(2):382-98. DOI: 10.1016/j.neuron.2015.06.032. View

2.
Schwenk J, Perez-Garci E, Schneider A, Kollewe A, Gauthier-Kemper A, Fritzius T . Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat Neurosci. 2015; 19(2):233-42. DOI: 10.1038/nn.4198. View

3.
Bildl W, Haupt A, Muller C, Biniossek M, Thumfart J, Huber B . Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications. Mol Cell Proteomics. 2011; 11(2):M111.007955. PMC: 3277747. DOI: 10.1074/mcp.M111.007955. View

4.
Craig M, Mayne E, Bettler B, Paulsen O, McBain C . Distinct roles of GABAB1a- and GABAB1b-containing GABAB receptors in spontaneous and evoked termination of persistent cortical activity. J Physiol. 2012; 591(4):835-43. PMC: 3591701. DOI: 10.1113/jphysiol.2012.248088. View

5.
Chu D, Penney Jr J, Young A . Cortical GABAB and GABAA receptors in Alzheimer's disease: a quantitative autoradiographic study. Neurology. 1987; 37(9):1454-9. DOI: 10.1212/wnl.37.9.1454. View