» Articles » PMID: 27050411

Identification of Differentially Expressed Genes Through Integrated Study of Alzheimer's Disease Affected Brain Regions

Overview
Journal PLoS One
Date 2016 Apr 7
PMID 27050411
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Alzheimer's disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation.

Methods: The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets.

Results: We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we identified the presence of 23 non-coding features, including four miRNA precursors (miR-7, miR570, miR-1229 and miR-6821), dysregulated across the brain regions. Furthermore, we compared our results with two popular meta-analysis methods RankProd and GeneMeta to validate our findings and performed a sensitivity analysis by removing one dataset at a time to assess the robustness of our results. These new findings may provide new insights into the disease mechanisms and thus make a significant contribution in the near future towards understanding, prevention and cure of AD.

Citing Articles

Amyloid-β oligomers trigger sex-dependent inhibition of GIRK channel activity in hippocampal neurons in mice.

Luo H, Marron Fernandez de Velasco E, Gansemer B, Frederick M, Aguado C, Lujan R Sci Signal. 2024; 17(856):eado4132.

PMID: 39353038 PMC: 11600338. DOI: 10.1126/scisignal.ado4132.


IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency.

Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernandez J, Walsh K EMBO Rep. 2024; 25(9):3990-4012.

PMID: 39075237 PMC: 11387764. DOI: 10.1038/s44319-024-00218-2.


The Proteomic Analysis of Chronic Migraine Exosomes Reveals Disease Patterns and Potential Biomarkers.

Zhang W, Wan F, Duan L, Tao W, Wang J, Huang L Mol Neurobiol. 2024; 62(2):2070-2085.

PMID: 39066974 DOI: 10.1007/s12035-024-04389-w.


WNKs regulate mouse behavior and alter central nervous system glucose uptake and insulin signaling.

Jaykumar A, Binns D, Taylor 4th C, Anselmo A, Birnbaum S, Huber K bioRxiv. 2024; .

PMID: 38915673 PMC: 11195145. DOI: 10.1101/2024.06.09.598125.


Profiling of long non-coding RNAs in hippocampal-entorhinal system subfields: impact of RN7SL1 on neuroimmune response modulation in Alzheimer's disease.

Liu H, Li J, Wang X, Luo S, Luo D, Ge W J Neuroinflammation. 2024; 21(1):84.

PMID: 38582873 PMC: 10999094. DOI: 10.1186/s12974-024-03083-x.


References
1.
Lee M, Kang Y, Suk K, Schwab C, Yu S, McGeer P . Acidic fibroblast growth factor (FGF) potentiates glial-mediated neurotoxicity by activating FGFR2 IIIb protein. J Biol Chem. 2011; 286(48):41230-41245. PMC: 3308836. DOI: 10.1074/jbc.M111.270470. View

2.
Mercer T, Qureshi I, Gokhan S, Dinger M, Li G, Mattick J . Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 2010; 11:14. PMC: 2829031. DOI: 10.1186/1471-2202-11-14. View

3.
Minces V, Alexander A, Datlow M, Alfonso S, Chiba A . The role of visual cortex acetylcholine in learning to discriminate temporally modulated visual stimuli. Front Behav Neurosci. 2013; 7:16. PMC: 3602721. DOI: 10.3389/fnbeh.2013.00016. View

4.
Katz M, Amit I, Yarden Y . Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta. 2007; 1773(8):1161-76. PMC: 2758354. DOI: 10.1016/j.bbamcr.2007.01.002. View

5.
Patel N, Gordon M, Connor K, Good R, Engelman R, Mason J . Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging. 2005; 26(7):995-1000. DOI: 10.1016/j.neurobiolaging.2004.09.014. View