» Articles » PMID: 30672911

Sterol A-ring Plasticity in Hedgehog Protein Cholesterolysis Supports a Primitive Substrate Selectivity Mechanism

Overview
Specialty Chemistry
Date 2019 Jan 24
PMID 30672911
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Cholesterolysis of Hedgehog family proteins couples endoproteolysis to protein C-terminal sterylation. The transformation is self-catalyzed by HhC, a partially characterized enzymatic domain found in precursor forms of Hedgehog. Here we explore spatial ambiguity in sterol recognition by HhC, using a trio of derivatives where the sterol A-ring is contracted, fused, or distorted. Sterylation assays indicate that these geometric variants react as substrates with relative activity: cholesterol, 1.000 > A-ring contracted, 0.100 > A-ring fused, 0.020 > A-ring distorted, 0.005. Experimental results and computational sterol docking into the first HhC homology model suggest a partially unstructured binding site with substrate recognition governed in large part by hydrophobic interactions.

Citing Articles

Hedgehog Autoprocessing: From Structural Mechanisms to Drug Discovery.

Kandel N, Wang C Front Mol Biosci. 2022; 9:900560.

PMID: 35669560 PMC: 9163320. DOI: 10.3389/fmolb.2022.900560.


Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid.

Zhang X, Kotikam V, Rozners E, Callahan B Chembiochem. 2021; 23(4):e202100594.

PMID: 34890095 PMC: 8961972. DOI: 10.1002/cbic.202100594.


Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid and Potential Utility for SARS-CoV-2 Detection.

Zhang X, Kotikam V, Rozners E, Callahan B bioRxiv. 2021; .

PMID: 34494022 PMC: 8423218. DOI: 10.1101/2021.08.30.458287.


Subverting Hedgehog Protein Autoprocessing by Chemical Induction of Paracatalysis.

Smith C, Wagner A, Stagnitta R, Xu Z, Pezzullo J, Giner J Biochemistry. 2020; 59(6):736-741.

PMID: 32013401 PMC: 7031038. DOI: 10.1021/acs.biochem.0c00013.


General Base Swap Preserves Activity and Expands Substrate Tolerance in Hedgehog Autoprocessing.

Zhao J, Ciulla D, Xie J, Wagner A, Castillo D, Zwarycz A J Am Chem Soc. 2019; 141(46):18380-18384.

PMID: 31682419 PMC: 7106946. DOI: 10.1021/jacs.9b08914.


References
1.
Giner J . Tetrahydropyran formation by rearrangement of an epoxy ester: a model for the biosynthesis of marine polyether toxins. J Org Chem. 2005; 70(2):721-4. DOI: 10.1021/jo048198j. View

2.
Wojciechowski Z, Zimowski J, Zimowski J, Lyznik A . Specificity of sterol-glucosylating enzymes from Sinapis alba and Physarum polycephalum. Biochim Biophys Acta. 1979; 570(2):363-70. DOI: 10.1016/0005-2744(79)90156-6. View

3.
Schowen K, Limbach H, Denisov G, SCHOWEN R . Hydrogen bonds and proton transfer in general-catalytic transition-state stabilization in enzyme catalysis. Biochim Biophys Acta. 2000; 1458(1):43-62. DOI: 10.1016/s0005-2728(00)00059-1. View

4.
Petrov K, Wierbowski B, Salic A . Sending and Receiving Hedgehog Signals. Annu Rev Cell Dev Biol. 2017; 33:145-168. DOI: 10.1146/annurev-cellbio-100616-060847. View

5.
Lim J, Rogaski B, Klauda J . Update of the cholesterol force field parameters in CHARMM. J Phys Chem B. 2011; 116(1):203-10. DOI: 10.1021/jp207925m. View