» Articles » PMID: 30664649

Anti-LRP5/6 VHHs Promote Differentiation of Wnt-hypersensitive Intestinal Stem Cells

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Jan 22
PMID 30664649
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Wnt-induced β-catenin-mediated transcription is a driving force for stem cell self-renewal during adult tissue homeostasis. Enhanced Wnt receptor expression due to mutational inactivation of the ubiquitin ligases RNF43/ZNRF3 recently emerged as a leading cause for cancer development. Consequently, targeting canonical Wnt receptors such as LRP5/6 holds great promise for treatment of such cancer subsets. Here, we employ CIS display technology to identify single-domain antibody fragments (VHH) that bind the LRP6 P3E3P4E4 region with nanomolar affinity and strongly inhibit Wnt3/3a-induced β-catenin-mediated transcription in cells, while leaving Wnt1 responses unaffected. Structural analysis reveal that individual VHHs variably employ divergent antigen-binding regions to bind a similar surface in the third β-propeller of LRP5/6, sterically interfering with Wnt3/3a binding. Importantly, anti-LRP5/6 VHHs block the growth of Wnt-hypersensitive Rnf43/Znrf3-mutant intestinal organoids through stem cell exhaustion and collective terminal differentiation. Thus, VHH-mediated targeting of LRP5/6 provides a promising differentiation-inducing strategy for treatment of Wnt-hypersensitive tumors.

Citing Articles

Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction.

Maurice M, Angers S Nat Rev Mol Cell Biol. 2025; .

PMID: 39856369 DOI: 10.1038/s41580-024-00823-y.


Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review).

Guo Y, Ren C, He Y, Wu Y, Yang X Mol Med Rep. 2024; 30(3).

PMID: 38994768 PMC: 11258600. DOI: 10.3892/mmr.2024.13281.


E3 ligases RNF43 and ZNRF3 display differential specificity for endocytosis of Frizzled receptors.

Bugter J, van Kerkhof P, Jordens I, Janssen E, Minh T, Iglesias van Montfort D Life Sci Alliance. 2024; 7(9).

PMID: 38969364 PMC: 11231576. DOI: 10.26508/lsa.202402575.


Multifaceted effects of LRP6 in cancer: exploring tumor development, immune modulation and targeted therapies.

Li L, Zhao L, Yang J, Zhou L Med Oncol. 2024; 41(7):180.

PMID: 38898247 DOI: 10.1007/s12032-024-02399-1.


Evolutionary and functional analyses of LRP5 in archaic and extant modern humans.

Roca-Ayats N, Maceda I, Bruque C, Martinez-Gil N, Garcia-Giralt N, Cozar M Hum Genomics. 2024; 18(1):53.

PMID: 38802968 PMC: 11131306. DOI: 10.1186/s40246-024-00616-6.


References
1.
Jackson H, Granger D, Jones G, Anderson L, Friel S, Rycroft D . Novel Bispecific Domain Antibody to LRP6 Inhibits Wnt and R-spondin Ligand-Induced Wnt Signaling and Tumor Growth. Mol Cancer Res. 2016; 14(9):859-68. DOI: 10.1158/1541-7786.MCR-16-0088. View

2.
van Kappel E, Maurice M . Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br J Pharmacol. 2017; 174(24):4575-4588. PMC: 5727331. DOI: 10.1111/bph.13922. View

3.
Weivoda M, Youssef S, Oursler M . Sclerostin expression and functions beyond the osteocyte. Bone. 2016; 96:45-50. PMC: 5328839. DOI: 10.1016/j.bone.2016.11.024. View

4.
Andersson-Rolf A, Merenda A, Mustata R, Li T, Dietmann S, Koo B . Simultaneous paralogue knockout using a CRISPR-concatemer in mouse small intestinal organoids. Dev Biol. 2016; 420(2):271-277. PMC: 5161140. DOI: 10.1016/j.ydbio.2016.10.016. View

5.
Yin X, Farin H, van Es J, Clevers H, Langer R, Karp J . Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods. 2013; 11(1):106-12. PMC: 3951815. DOI: 10.1038/nmeth.2737. View